期刊文献+

基于隐性马尔可夫模型的手势识别设计和优化 被引量:8

HMM-based sketch recognition system:design and optimization
下载PDF
导出
摘要 新型的笔式交互技术要求能够高效地识别用户手势,适应用户的手绘风格。建立了基于隐性马尔可夫的手势识别模型,在此基础上提出了在重采样阶段的中点补偿和编码阶段的方向编码优化方法。实验结果表明该识别模型能以更精简的采样点数量表示手势并给出良好的识别结果,减少了模型训练的运算量。 Newly pen-based interaction technology requires efficient user gesture recognition and user style adaption.This paper built an HMM-based sketch recognition system and used a new method called midpoint-compensation in resampling phase and an improved direction coding method for optimization.The experiment shows that the sketch recognition model can recognizes user gesture efficiently meanwhile with smaller data to represent the gesture and less computation for training the model.
出处 《计算机应用研究》 CSCD 北大核心 2011年第6期2386-2388,共3页 Application Research of Computers
关键词 手势识别 隐性马尔可夫模型 重采样 方向编码 gesture recognition HMM resampling direction coding
  • 相关文献

参考文献8

  • 1孙正兴,冯桂焕,周若鸿.基于草图的人机交互技术研究进展[J].计算机辅助设计与图形学学报,2005,17(9):1889-1899. 被引量:54
  • 2RUBINE D. Specifying gestures by example [ J ]. Computer Graphi- cs, 1991,21 (4) :329-337.
  • 3MARK W. Design and implementation of a stroke interface library [ C ]//IEEE Region 4 Student Paper Contest, 1997.
  • 4SUN Zheng-xing,LIU Wen-yin, PENG Bin-bin,et al. User adaptation for online sketchy shape recognition[ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2004 : 303-314.
  • 5GOLUBITSKY O, WATT S. Online recognition of multi-stroke symbols with orthogonal Series[ C]//Proc of the lOth International Conference on Document Analysis and Recognition. 2009:1265-1269.
  • 6WILLEMS D. Iconic and multi-stroke gesture recognition [ J]. Pattern Recognition, 2009,42 ( 12 ) : 3303- 3312.
  • 7LI X, YEUNG D. On-line handwritten alphanumeric character recogni- tion using dominant points in strokes [ J ]. Pattern Recognition, 1997,30( 1 ) :31-44.
  • 8DERK A, CRAIG B. Hidden Markov model symbol recognition for sketch-based interfaces [ C ]//Proc of AAAI Fall Symposium. 2004 : 15-21.

二级参考文献83

  • 1马翠霞,张凤军,陈由迪,戴国忠.支持概念设计的特征手势建模[J].计算机辅助设计与图形学学报,2004,16(4):559-565. 被引量:19
  • 2宋保华,叶军,于明玖,杨海成,陆长德.笔输入草图的分层识别[J].计算机辅助设计与图形学学报,2004,16(6):753-758. 被引量:18
  • 3孙正兴,彭彬彬,丛兰兰,孙建勇,张斌.在线草图识别中的用户适应性研究[J].计算机辅助设计与图形学学报,2004,16(9):1207-1215. 被引量:10
  • 4Ivan Sutherland, Sketchpad: A man-machine graphical communication system[A]. In: Proceedings of the 1963 Spring Joint Computer Conference[C]. Baltimore, MD: Spartan Books, 1963. 45~53
  • 5Herot C F. Graphical input through machine recognition of sketches[C]. In: Computer Graphics Proceedings, the 3rd Annual Conference Series, ACM SIGGRAPH, 1976. 97~102.
  • 6Negroponte N. Recent advances in sketch recognition[A]. In: American Federation of Information Processing National Computer Conference, Boston, MA, 1973(42): 663~675.
  • 7Microsoft Presspass, Digital Ink. Breakthrough technology in tablet PC: Brings the power of the Pen to the desktop[OL]. http:∥www.microsoft.com/presspass/features/2002/.
  • 8Microsoft Presspass, With launch of tablet PCs, Pen-based computing is a reality[OL]. http:∥www.microsoft.com/presspass/features/2002/.
  • 9Walid G Aref, Daniel Barbará, Daniel P. Lopresti, Ink as a first-class datatype in multimedia databases[A]. In: Multimedia Databases[C], New York: Springer-Verlag, 1995. 113~163.
  • 10Daniel P Lopresti. Ink as multimedia data[A]. In: Proceedings of the 4th International Conference on Information, Systems, Analysis and Synthesis, Orlando Florida, 1998. 122~128.

共引文献53

同被引文献64

  • 1胡友树.手势识别技术综述[J].中国科技信息,2005(2):42-42. 被引量:27
  • 2高建坡,王煜坚,杨浩,吴镇扬.一种基于KL变换的椭圆模型肤色检测方法[J].电子与信息学报,2007,29(7):1739-1743. 被引量:15
  • 3Erol A,Bebis G,Nicolescu M,et al.Vision-based Hand PoseEstimation:A Review[J].Computer Vision and Image Under-standing,2007,108(1/2):52-73.
  • 4Mann W,Prinz P M.An Investigation of the Need for SignLanguage Assessment in Deaf Education[J].American Annals ofthe Deaf,2006,151(3):356-370.
  • 5Sato Y,Bernardin K,Kimura H,et al.Task Analysis Based onObserving Hands and Objects by Vision[C]//Proc.of InternationalConference on Intelligent Robots and Systems.Lausanne,Switzerland:[s.n.],2002.
  • 6Wang Fei,Zhang Changshui.Feature Extraction by Maximizingthe Average Neighborhood Margin[C]//Proc.of IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:[s.n.],2007.
  • 7AKL A, CHEN F, VALAEE S. A novel accelerometer-based ges- ture recognition system [ J]. IEEE Transactions on Signal Process- ing, 2011, 59(12): 6197-6205.
  • 8Apple. Apple iPhone [ EB/OL]. [2014-05-30]. http://www, ap- ple. com/iphone.
  • 9Nintendo. Wii [ EB/OL]. [ 2014-05-30]. http://www, nintendo. com/wii.
  • 10PANWAR M. Hand gesture recognition based on shape parameters [ C]// Proceedings of the 2012 International Conference on Compu- ting, Communication and Applications. Piscataway: IEEE, 2012:1 -6.

引证文献8

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部