期刊文献+

基于混合模式缓存优化的三角形条带化 被引量:2

Cache-Friendly Triangle Strip Generation Based on Hybrid Model
下载PDF
导出
摘要 针对已有缓存优化的三角形条带化算法不能兼具较高顶点缓存命中率和适应多种顶点缓存的问题,提出了一种基于混合模式缓存优化的三角形条带化算法.采用优化求解传输代价方程的算法,通过精确地模拟缓存状态变化来获得较理想的缓存命中率;启用后进先用(LIFU)的数据引用方式重新定义了优化求解传输代价方程,使三角形条带同时兼顾顺时针和逆时针2种增长方向,极大地提高了三角形条带内部顶点的重用性,使之在任意顶点缓存中均可有效地提高顶点缓存命中率.实验结果表明,该算法兼具较高顶点缓存命中率和适应多种顶点缓存的优点,可有效地缓解GPU的处理速度不断提高而数据访问速度严重滞后的现象. Most of the existing cache optimization triangle generation methods have a critical problem that high cache optimization and wide applicability cannot be achieved at the same time.To solve this problem,a new algorithm that employs hybrid model to generate triangle strips is proposed in this paper.Measured by optimal cost function,given a mesh,a sequence of triangle strips which have the minimal vertex cache miss rate is generated by this algorithm.It adopts last-in-first-used(LIFU)vertices cache replacement policy.Moreover,it redefines a novel primary cost function.Measured by the cost function,the triangle strip can grow in either counter-clockwise or clockwise direction,which is beneficial to the vertices re-use among one triangle strip and further ensures low cache miss rate even in any oblivious cache.Examples show both high cache optimization and wide applicability can be achieved at the same time.It can be an effective solution to the bus traffic between graphics subsystem and memory.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第6期1006-1012,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60773132) 浙江省科技计划科研基金(2009C33001) 浙江省自然科学基金(Y1100018) 浙江省科技厅计划项目(2010C31090)
关键词 三角形 三角形条带 顶点缓存 缓存优化 triangle triangle strip vertex cache cache friendly
  • 相关文献

参考文献2

二级参考文献10

  • 1Evans F, Skiena S, Varshney A. Optimizing triangle strips for fast rendering [C]//Proceedings of IEEE Visualization, San Francisco, 1996:319-326.
  • 2Speckmann B, Snoeyink J. Easy triangle strips for TIN terrain models [C] //Proceedings of Cannadian Conference on Computational Geometry, Kingston, 1997:91-100.
  • 3Deering M. Geometry compression [C] //Computer GraphicsProceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1995:13-20.
  • 4Chow M M. Optimized geometry compression for real-time rendering [C] //Proceedings of IEEE Visualization, Phoenix, 1997:347-354.
  • 5Hoppe H. Optimization of mesh locality for transparent vertex caching [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1999:269-276.
  • 6Bogomjakov A, Gotsman C. Universal rendering sequences for transparent vertex caching of progressive meshes [J]. Computer Graphics Forum, 2002, 21(2): 137-148.
  • 7Lin G, Yu T P Y. An improved vertex caching scheme for 3D mesh rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4) : 640-648.
  • 8Sander P V, Nehab D, Barczak J. Fast triangle reordering for vertex locality and reduced overdraw [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Diego, 2007:89-97.
  • 9Bar-Yehuda R, Gosman C. Time/space tradeoffs for polygon mesh rendering [J]. ACM Transactions on Graphics, 1996, 15 (2):141-152.
  • 10Nehab D, Barczak J, Sander P V. Triangle order optimization for graphics hardware computation culling [C] // Proceedings of Interactive 3D Graphics and Games, San Francisco, 2006: 207-211.

共引文献4

同被引文献16

  • 1HOPPE H. Optimization of mesh locality fur transparent vertex cac- hing [ C]// SIGGRAPH" 99: Proceedings of the 26th Annual Con- trence on Computer Graphics and Interactive Techniques. New York: ACM, 1999:269-276.
  • 2YOON S-E, I,INDSTROM P. Mesh layouts for block-based caches [ J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 1213-1220.
  • 3BOGOMJAKOV A, GOTSMAN C. Universal rendering sequences tor transparent vertex caching of progressive meshes [ J]. Computer Graphics Forum, 2002, 21(2) : 137 - 148.
  • 4KARYPIS G, KUMAR V. Multilevel k-way partitioning scheme for irregular graphs [ J]. Journal of Parallel and Distributed Computing, 1998, 48( 1): 96 - 129.
  • 5LING. YU T P Y. An improved vertex caching scheme for 3D mesh rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4): 640-648.
  • 6SANDER P V, NEHAB D, BARCZAK J. Fast triangle reurdering for vertex locality and reduced overdraw [ J]. ACM Transactions on Graphics. 2007. 26(3): 89-97.
  • 7NEHAB D, BARCZAK J, SANDER P. Triangle order optimization for graphics hardware computation culling [C]// Proceeding of 2006 Symposium on Interactive 3D Graphics and Games. New York: ACM, 2006:207-211.
  • 8YOON S, LINDSTROM P, PASCUCCI V, et al. Cache-oblivious mesh layouts [J]. ACM Transactions on Graphics, 2005. 24(3):886 -893.
  • 9LIU R, ZHANG H, VAN KAICK O. Spectral sequencing based on graph distance [ C]// GMP 2006: Proceeding of the 4th Interna- tional Conference on Geometric Modeling and Processing, LNCS 4077. Berlin: Springer, 2006:632-638.
  • 10BARTttOLDI J J, GOLDSMAN P. Muhiresolution indexing of tri- angulated irregular networks [ J]. IEEE Transactions on Visualiza- tion and Computer Graphics, 2004, 10(4): 484-495.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部