期刊文献+

Mean Shift迭代构造拓扑保持图像变换

Topology Preserving Image Transformation through Mean Shift Iteration
下载PDF
导出
摘要 在图像弹性配准中,基于径向基函数的小形变变换模型存在拓扑关系不能保持的问题.为此针对小形变模型提出一种基于Mean Shift迭代的拓扑保持图像变换方法.首先在拓扑不能保持的区域确定新增控制点对,通过Mean Shift迭代算法调整新增目标控制点的位置,再根据形变曲面的拓扑保持情况和配准度量的改善情况筛选新增控制点对,最后将新增控制点对添加到原始控制点集合中,得到拓扑保持的、配准精度得到提高的图像变换结果.人工图像和实际图像的配准实验结果表明了该方法的有效性. Transformations based on radial basis functions expansion are not invertible and topology is not preserved in elastic image registration with large deformation.Under the precondition of correct correspondences of control points,a novel topology-preserving transformation is presented in this paper which warps images for large deformation using radial basis functions and Mean Shift iterations.At first,additional points were tacked at topology non-preserving regions where Jacobian values are negative.Mean Shift iteration was adopted to modify additional target points.The optimal additional point pairs,which resulted in positive Jacobian values of transformation function and improved registration accuracy,were selected.They were combined with original control point set to construct topology preserving transformation functions with radial basis functions.The image registration accuracy was improved using the extended control point set.We compared our method with traditional ones and demonstrated that the proposed method was advantageous on preserving topology of deformation field.Experiments of artificial images and real medical images showed the feasibility of our method.
作者 杨烜
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第6期1078-1084,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60972112)
关键词 图像配准 图像变换 径向基函数 拓扑保持 image registration image transformation radial basis function topology preservation
  • 相关文献

参考文献13

  • 1Rueckert D, Aljabar P. Nonrigid registration of medical images: theory, methods, and applications [J]. IEEE Signal Processing Magazine, 2010, 27(4): 113-119.
  • 2Holden M. A review of geometric transformations for nonrigid body registration [J]. IEEE Transactions on Medical Imaging, 2008, 27(1): 111-128.
  • 3Ellingsen I. M, Chintalapani G, Taylor R H, et al. Robust deformable image registration using prior shape information for atlas to patient registration [J]. Computerized Medical Imaging and Graphics, 2010, 34(1) : 79-90.
  • 4Joshi S C, Miller M I. Landmark matching via large deformation diffeomorphisms [J]. IEEE Transactions on Image Processing, 2000, 9(8): 1357-1370.
  • 5As hburner J. A fast diffeomorphic image registration algorithm[J]. NeuroImage, 2007, 38(1): 95-113.
  • 6Yanovsky I, Thompson P M, Osher S, et al. Topology preserving log-unbiased nonlinear image registration: theory and implementation [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos:IEEE Computer Society Press, 2007:1-8.
  • 7Johnson H J, Christensen G E. Consistent landmark and intensity-based image registration [J]. IEEE Transactions on Medical Imaging, 2002, 21(5): 450-461.
  • 8Musse O, deformable parametric Processing, Heitz F, Armspach J P. Topology preserving image matching using constrained hierarchical models [J]. IEEE Transactions on Image 2001, 10(7): 1081-1093.
  • 9Noblet V, Heinrich C, Heitz F, et al. 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization [J]. IEEE Transactions on lmage Processing, 2005, 14(5): 553-566.
  • 10Sdika M. A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization [J]. IEEE Transactions on Medical Imaging, 2008, 27(2): 271- 281.

二级参考文献21

  • 1袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准[J].中国图象图形学报,2005,10(6):767-772. 被引量:4
  • 2Harris C, Stephens M. A combined corner and edge detector [C] //Proceedings of the Alvey Vision Conference, Manchester, 1988:147-151.
  • 3Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors [J]. International Journal of Computer Vision, 2004, 60(1): 63 86.
  • 4Yi S, Labate D, Easley G R, et al. A shearlet approach to edge analysis and detection [J]. IEEE Transactions on Image Processing, 2009, 18(5): 929-941.
  • 5Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features [C] // Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1458-1465.
  • 6Bhowmick P, Pradhan R K, Bhattacharya B B. Approximate matching of digital point sets using a novel angular tree [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5): 769-782.
  • 7Bai X, Sapiro G. Geodesic matting: a framework for fast interactive image and video segmentation and matting [J]. International Journal of Computer Vision, 2009, 82(2); 113- 132.
  • 8Lhuillier M, Quan L. Match propagation for image-based modeling and rendering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8) : 1140-1146.
  • 9Kostliva J, Cech J, Sara R. Feasibility boundary in dense and semi-dense stereo matching [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, 2007:1-8.
  • 10Kannala J, Rahtu E, Brandt S S, et al. Ohject recognition and segmentation by non rigid quasi-dense matching [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008 : 1-8.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部