摘要
基于分析用户日常活动间存在的相关性,利用活动与数据间的紧密联系,提出了一种基于活动的数据空间数据关系发现方法。通过分析用户活动发现数据间的隐含关联。利用日志系统收集用户活动窗口信息,从语义、切换、时间等方面计算活动相关度信息,并从中提取生成数据关系信息。系统还可随用户递增的活动信息及用户对数据关系的反馈,更新数据关系信息,提高系统的服务能力。
By analyzing the correlation of user’s daily activities and the close connection between data and activities, we described an activity-theory based relationship discovery and evolution algorithm in dataspace. Log user′s activity window information and calculate activity-related information from the semantic, switching, and time. Then extract data-related information from activity-related information. The system can also evolve more accurate data-related information by using user′s feedback and increasingly user′s activity information.
出处
《微型机与应用》
2011年第11期12-15,共4页
Microcomputer & Its Applications
关键词
数据空间演化
活动理论
数据关系发现
dataspace evolution
activity theory
data relationship discovery