期刊文献+

基于活动的数据空间数据关系发现

Activity-based relationship discovery algorithm in dataspace
下载PDF
导出
摘要 基于分析用户日常活动间存在的相关性,利用活动与数据间的紧密联系,提出了一种基于活动的数据空间数据关系发现方法。通过分析用户活动发现数据间的隐含关联。利用日志系统收集用户活动窗口信息,从语义、切换、时间等方面计算活动相关度信息,并从中提取生成数据关系信息。系统还可随用户递增的活动信息及用户对数据关系的反馈,更新数据关系信息,提高系统的服务能力。 By analyzing the correlation of user’s daily activities and the close connection between data and activities, we described an activity-theory based relationship discovery and evolution algorithm in dataspace. Log user′s activity window information and calculate activity-related information from the semantic, switching, and time. Then extract data-related information from activity-related information. The system can also evolve more accurate data-related information by using user′s feedback and increasingly user′s activity information.
作者 崔晨 吴扬扬
出处 《微型机与应用》 2011年第11期12-15,共4页 Microcomputer & Its Applications
关键词 数据空间演化 活动理论 数据关系发现 dataspace evolution activity theory data relationship discovery
  • 相关文献

参考文献8

  • 1Franklin M, Halevy A, Maier D. From databases to dataspaces: a new abstraction for information management [J]. ACM Sigmod Record, 2005,34(4)..27-33.
  • 2李玉坤,孟小峰,张相於.数据空间技术研究[J].软件学报,2008,19(8):2018-2031. 被引量:40
  • 3Nardi B. Context and consciousness: activity theory and human-computer interaction[M]. The MIT Press, 1996.
  • 4Jeffery S.Franklin M, Halevy A. Pay-as-you-go user feed- back for dataspace systems[C].SIGMOD'08. Vancouver, BC, Canada : ACM, 2008.
  • 5Li Y. Meng X, Kou Y. An efficient method for construc- ting personal dataspace [C]. WISA 2009. Xuzhou, Jiangsu, China: IEEE, 2009.
  • 6Ning W. De X. Resource summary for pay-as-you-go dataspace systems[C]. ICSP 2008. Beijing, China: IEEE, 2008.
  • 7寇玉波 李玉坤 孟小峰等.个人数据空间管理中的任务挖掘策略.计算机研究与发展,2009,46(2).
  • 8吴思颖,吴扬扬.基于中文WordNet的中英文词语相似度计算[J].郑州大学学报(理学版),2010,42(2):66-69. 被引量:21

二级参考文献59

  • 1荀恩东,颜伟.基于语义网计算英语词语相似度[J].情报学报,2006,25(1):43-48. 被引量:41
  • 2张承立,陈剑波,齐开悦.基于语义网的语义相似度算法改进[J].计算机工程与应用,2006,42(17):165-166. 被引量:38
  • 3Sebti A, Barfrous A A. A new word sense similarity measure in WordNet[C] //Proceedings of the International Multiconference on Computer Science and Information Technology. Washinton D C:IEEE Computer Society, 2008: 369-373.
  • 4Hirst G, St-Onge D. Lexical chains as representations of context for the detection and correction of malapropisms[M]// WordNet: an Electronic Lexical Database. Cambridge M A: MIT Press, 1998.
  • 5Resnik P. Using information content to evaluate semantic similarity in a taxonomy[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc,1995: 448-453.
  • 6刘群 李素建.基《知网》的词汇语义相似度计算.计算语言学及中文信息处理,2002,7(2):59-59.
  • 7Hristidis V, Gravano L, Papakonstantinou Y. Efficient IR-style keyword search over relational databases. In: Proc. of the 29th Int'l Conf. on Very Large Data Bases (VLDB 2003). New York: ACM Press, 2003. 850-861.
  • 8Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S. Keyword searching and browsing in databases using BANKS. In: Proc. of the 18th Int'l Conf. on Data Engineering (ICDE 2002). Dallas: IEEE Computer Society, 2002.431-440.
  • 9Shao F, Guo L, Botev C, Bhaskar A, Chettiar M, Yang F. Efficient keyword search over virtual XML views. In: Proc. of the 33rd Int'l Conf. on Very Large Data Bases (VLDB 2007). New York: ACM Press, 2007. 1057-1068.
  • 10Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: Ranked keyword search over XML documents. In: Proc. of the 23rd Int'l Conf. on Management of Data (SIGMOD 2003). New York: ACM Process, 2003. 16-27.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部