期刊文献+

时间分数阶色散方程的有限差分方法 被引量:11

A finite difference method for the time fractional dispersive equation
下载PDF
导出
摘要 提出求解时间分数阶色散方程的一类隐式差分格式,并证明其无条件稳定性和收敛性,收敛阶为O(τ+h2)。该分数阶色散方程是将一般的色散方程中的时间一阶导数用α(0<α<1)阶导数代替所得到的。数值算例表明本方法是有效的。 An implicit difference scheme for solving the time fractional dispersive equation is presented.It is shown that the method is unconditional stable and the convergence order of the method is O(τ+h2).The fractional dispersive equation is obtained from the classical dispersive equation by replacing the first order time derivative with fractional derivative of order α(0α1).Finally,the numerical example shows that the presented implicit difference method is effective.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第3期291-294,共4页 Journal of Natural Science of Heilongjiang University
基金 哈尔滨工业大学(威海)校研究基金资助项目(HIT(WH)200706)
关键词 分数阶色散方程 隐式差分格式 稳定性 收敛性 FOURIER分析 fractional dispersive equation implicit difference scheme stability convergence Fourier analysis
  • 相关文献

参考文献4

  • 1王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 2ZHU Shao-hong, ZHAO J. The alternating segment explicit-implicit scheme for the dispersive equation [ J ]. Applied Mathematics Letters, 2001, 14(6) :657 -662.
  • 3ZHANC. Qing-jie, WANG Wen-qia. A four-order alternating segment Crank-Nicolson scheme for the dispersive equation[J]. Computers and Math- ematics with Applications, 2009, 57(2) :283 -289.
  • 4CHEN Chang-ming, LIU F, BURRAGE K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation[ J]. Applied Mathematics and Computation ,2008,198:754 - 769.

二级参考文献5

共引文献20

同被引文献35

引证文献11

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部