期刊文献+

轴对称波方程的Lie点变换群及其群不变解 被引量:1

Axisymmetric wave equation's one-parameter Lie group of transformations and group invariant solutions
下载PDF
导出
摘要 首先用古典无穷小算法导出了由轴对称波方程的任意元和无穷小生成子的系数构成的超定线性偏微分方程组,即确定方程DE。其次借助符号计算机软件maple解方程组,求出了轴对称波方程的一些无穷小生成元,然后根据Lie第一基本定理求出了相对应的单参数Lie变换群;最后将所求得的无穷小生成元代入不变曲面条件,分别利用不变形式法和直接代入法求出轴对称波方程的群不变解。 First,an overdermined system of PDEs which is composed of the arbitrary element of axisymmetric wave equations and the coefficient of infinitesimal generators is derived by classical infinitesimal Lie method.Second,some infinitesimal generators of axisymmetric wave equation is given with the help of the symbols computer software Maple,and further the corresponding one-parameter Lie group of transformations is found out by the first fundamental theorem of Lie.Last,take the obtained infinitesimal generators into invariant surface condition,and then group invariant solutions of axisymmetric wave equation can be derived by use invariant form method and direct substitution method.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第3期360-364,共5页 Journal of Natural Science of Heilongjiang University
关键词 轴对称波方程 古典无穷小算法 单参数Lie变换群 群不变解 axisymmetric wave equation classical infinitesimal Lie method one-parameter Lie group of transformations group invariant solutions
  • 相关文献

参考文献8

  • 1BLUMA G W, KUMEI S. Symmetries and differential equations[ M ]. New York:Springer, 1989.
  • 2HUANG Ding-jiang,ZHANG Hong- qing. Group classification of general KdV type nonlinear evolution equation[ J]. Appl Math Mech,2009,30 (3) :275 -292.
  • 3布卢曼 G W,安科 S C.微分方程的对称与积分方法[M].闫振亚,译.北京:科学出版社,2009.
  • 4LAHNO V I, ZHDANOV R Z, MAGDA O. Group classification and exact solations of nonlinear wave equations [ J ]. Acta Appl Math,2006,91 : 253 -313.
  • 5LIE S. Gesammelte abhandlungen, Vol 6 [ M ]. Leipzig:Teubner, 1927 : 1 - 94.
  • 6AGUIRRE M, KRAUSE J. Infinitesimal symmetry transformations, II. Some nedimensional nonlinear systems [ J ]. J Math Phys, 1985,26:593 - 600.
  • 7PETER J O. Applications of Lie group method to partial differential equations[ M ]. Springer, 1999.
  • 8Olver P J. Application of Lie Groups to differential equations[ M ]. New York : Springer - Verlag, 1986.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部