期刊文献+

低温热源喷射式发电制冷复合系统的分析 被引量:2

Exergy Analysis of a Combined Power and Ejector Refrigeration Cycle Driven by Low-temperature Heat Sources
下载PDF
导出
摘要 根据热力学第二定律,对一种新型低温热源喷射式发电制冷复合系统进行了分析,并以R600a作为工质对系统进行了仿真计算.结果表明:在热源入口温度为420 K、热源热水流量为0.2kg/s、热源蒸发温度为370 K的标准工况下,系统净发电量为2.74 kW,系统制冷量为11.99 kW,系统的效率达到25.83%,系统能量利用率为45.34%;系统损失主要发生在蒸汽发生器和喷射器中.在热源蒸发温度提高过程中,系统内部工质流量发生改变,导致系统净发电量和效率小幅下降,制冷量和能量利用率先增后降.当热源蒸发温度为370 K时,系统能量利用率达到最大值. Exergy analysis was carried out for a novel combined power and ejector refrigeration cycle driven by low-temperature heat sources based on the second law of thermodynamics,while a numerical simulation performed for the system using R600a as the working fluid.Results show that under typical heat source conditions such as the inlet temperature Ths=420 K,mass flow m ·hs=0.2 kg/s and generating temperature Tg=370 K,the system may produce 2.74 kW of net power output(Wnet),11.99 kW of refrigeration output(Qe),with an exergy efficiency ηexergy up to 25.83% and energy utilization efficiency ηu up to 45.34%.The cycle exergy loss mainly occurs in the steam generator and ejector.When Tg increases,both Wnet and ηexergy drop slightly,whereas Qe and ηu show a trend of first increase and then decrease due to the variation of mass flow.The energy utilization efficiency ηu reaches maximum while Tg=370 K.
作者 郑彬 翁一武
出处 《动力工程学报》 CAS CSCD 北大核心 2011年第6期469-474,共6页 Journal of Chinese Society of Power Engineering
基金 国家基础研究发展计划(973)资助项目(2010CB227301)
关键词 低温热源 发电制冷复合循环系统 有机物朗肯循环 喷射式制冷循环 分析 low-temperature heat source combined power and refrigeration cycle organic Rankine cycle ejector refrigeration cycle exergy analysis
  • 相关文献

参考文献13

  • 1蔡向明,翁一武,郑彬.太阳能喷射式电冷联供系统的性能分析[J].动力工程学报,2010,30(6):462-466. 被引量:7
  • 2朱明善.能量系统的〓分析[M]清华大学出版社,1988.
  • 3HUANG B J,,CHANG J M,WANG C P,et al.1-Danalysis of ejector performance. InternationalJournal of Refrigeration . 1999
  • 4ENRICO B.Geothermal energy technology and cur-rent status:an overiew. Renewable&SustainableEnergy Riviews . 2002
  • 5Goswami D Yogi,Feng Xu.Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors. Journal of Solar Energy Engineering Transactions of the ASME . 1999
  • 6HASAN A A,GOSWAMI D Y.Exergyanalysis of a combined power and re-frigeration thermodynamic cycle drivenby a solar heat source. Journal ofSolar Energy Engineering . 2003
  • 7Kalogirou Soteris A.Solar thermal collectors and applications. Progress in Energy and Combustion Science . 2004
  • 8E. Ya. Sokolov,N. M. Zinger.Jet Apparatuses. . 1989
  • 9Arbel,A.,Henshgal,D.,Borak,M.,Sokolov,M.Ejectory irreversibility characteristics. Journal of Fluids Engineering Transactions of the ASME . 2003
  • 10ZHENG B,WENG Y W.A combinedpower and refrigeration cycle for lowtemperature heat sources. Solar Energy . 2010

二级参考文献11

共引文献6

同被引文献23

  • 1刘猛,张娜,蔡睿贤.新型燃气-氨水蒸汽功冷联供联合循环[J].中国电机工程学报,2006,26(17):82-87. 被引量:9
  • 2Zhang N, Lior N, Jin H G. The energy situation and its sustainable development strategy in China[J]. Energy, 2011, 36(6): 3639-3649.
  • 3Yu X H, Zhang Y F, Deng N, et al. Thermal response test and numerical analysis based on two models for ground- source heat pump system[J]. Energy and Buildings, 2013, 66: 657-666.
  • 4Honjo K, Tsunoda Y, Takenouchi H. Current status of super heat pump energy accumulation systems[M]//I-Ieat pumps for Energy Efficiency and Environmental Progress. NewYork: Elsevier, 1993: 553-561.
  • 5MoRal R. Heat pump technoiogy and working fluids [J]. XIXth International Congress of Refrigeration Holland, 1995, 4B: 1334-1341.
  • 6Liu N X, Lin S, Han L Z, et al. Moderately high temperature water source heat-pumps using a near- azeotropic refrigerant mixture[J]. Applied Energy, 2005, 80(4): 435-447.
  • 7Barbier E. Geothermal energy technology and current status: an overview[J]. Renewable Sustainable Energy Review, 2002, 6(1-2): 3-65.
  • 8Hettiarachchi H D, Golubovic M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources [J]. Energy, 2007, 32(9): 1698-1706.
  • 9Wei L L, Zhang Y F, Chen X X, et al. Efficiency improving strategies of low-temperature heat conversion systems using Organic Rankine cycles: an overview [J]. Energy Sources, PartA: Recovery, Utilization, and Environmental Effects, 2011, 33(9): 869-878.
  • 10Wang, H L, R. PetersonR, and T. HerronT. Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vaporcompression cycle)[J]. Energy, 2011, 36(8): 4809-4820.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部