期刊文献+

熔体快淬Al(80-x)Si(20)Mnx锂离子电池负极材料的电化学性能 被引量:1

Electrochemical properties of melt-spun Al_(80-x)Si_(20)Mn_x alloy anodes for lithium-ion batteries
下载PDF
导出
摘要 采用熔体快淬法制备了化学组成为Al80-xSi20Mnx(x=0、5%、7%、10%(摩尔分数))的锂离子电池合金负极材料。分析了合金的相组成、热力学状态、微观组织和与锂离子电池相关的电化学性能。结果显示,当Mn含量位于5%~7%时,熔体快淬Al80-xSi20Mnx合金可得到单一的过饱和固溶体和部分非晶,前10次电化学循环中具有比Al70-xSi30Mnx(x=0、5%、7%、10%(摩尔分数))多相合金高的容量,与含40%Si、相同Mn含量的合金相近。分析表明,在含20%~40%Si、5%~10%Mn的熔体快淬Al基合金中,锂主要储存在过饱和固溶体中,晶界和相界对储锂有重要贡献。合金的循环性能与Al基过饱和固溶体的成分有关,第三组元Mn的加入提高固溶体的过饱和度,并通过影响Li原子的扩散,改善循环性能。 Al80-xSi20Mnx(x=0,5%,7%,10%) ribbons were prepared by melt spinning.The phase constitutions,thermodynamic state,microstructures and electrochemical performances have been measured.The results reveal that when Mn contents are in a range of 5%-7%,only a supersaturated solid solution of Si and Mn in fcc-Al and some metallic glass can be detected.The specific capacities is similar with that of Al60-xSi40Mnx(x=0,5%,7%,10mol%),but higher than Al70-xSi30Mnx(x=0,5%,7%,10mol%).It is considered that Li atoms are mainly stored in the Al-Si-Mn supersaturated solid solution,when Si and Mn contents are in a range of 20%-40%,5%-7%,respectively.The grain boundaries and phase boundaries have a significant contribution for Li storage.The cycle ability of the alloys is relevant to the compositions.Mn additions can promote more atoms to dissolve in the Al-based supersaturated solid solution,resulting in an improvement of the cycle performance by an effect on the diffusion of Li atoms.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第6期1008-1011,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50871081)
关键词 Al-Si-Mn合金 熔体快淬 微观组织 过饱和固溶体 电化学性能 Al-Si-Mn alloys melt spinning microstructure supersaturated solid solution electrochemical properties
  • 相关文献

参考文献3

二级参考文献38

  • 1Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries [ J ]. J Power Sources, 1999, 81 -82:233-236.
  • 2Zhang X W, Wang C S, Appleby A J, et al. Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure [ J]. J Power Sources, 2002, 109:136 - 141.
  • 3Vaughey J T, Fransson L, Swinger H A, et al. Alternative anode materials for lithium-ion batteries: a study of Ag3 Sb [ J]. J Power Sources, 2003, 119 - 121 : 64 -68.
  • 4Hwang S M, Lee H Y, Jang S W, et al. Lithium insertion in SiAg powders produced by mechanical alloying [ J]. Electrochem Solid-State Lett, 2001, 4 : A97 - A100.
  • 5Crosnier O, Evaux X D, Brousse T, et al. Influence of particle size and matrix in "metal" anodes for Li-ion cells [J]. J Power Sources, 2001,97 - 98 : 188 - 190.
  • 6Crosnier O, Brousse T, Evaux X D, et al. New anode systems for lithium ion cells [J]. J Power Sources, 2001,94:169 - 174.
  • 7Hewitt K C, Beaulieu L Y, Dahn J R. Electrochemistry of InSb as a Li insertion host. Problems and prospects [ J]. J Electrochem Soc, 2001, 148:A402 -410.
  • 8Huggins R A. Lithium alloy negative electrodes formed from convertible oxides [J ]. Solid State lonics, 1998, 113 -115:57 - 67.
  • 9Jose L T. Inorganic materials for the negative electrode of lithium ion batteries: state-of-the-art and future prospects [ J]. Mat Sci Eng R, 2003, 40:103-136.
  • 10Hamon Y, Brousse T, Jousse F, et al. Aluminum negative electrode in lithium ion batteries [J]. J Power Sources, 2001 ,97 - 98: 185-187.

共引文献6

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部