期刊文献+

纳米金与细胞相互作用机理的蛋白质组学研究 被引量:7

Proteomic analysis of molecular mechanism of interactions between gold nanoparticles and human dermal fibroblasts-fetal
下载PDF
导出
摘要 应用蛋白质组学结合生物信息学方法研究纳米金与人皮肤成纤维细胞(HDF-f)的作用机理。首先采用柠檬酸钠还原氯金酸法制备20nm的纳米金,然后应用MTT法和流式细胞术评价纳米金的细胞毒性及对细胞周期和细胞凋亡的影响。接着应用蛋白质组学技术和生物信息学方法筛选纳米金作用后细胞发生差异表达的蛋白质并进行基因本体论分析。MTT实验结果表明,浓度为200μmol/L、粒径为20nm的纳米金与HDF-f作用1、4、8h后均未产生细胞毒性,流式细胞仪结果显示纳米金作用后S期细胞增加而G2/M期细胞减少。对蛋白质组学实验筛选出的29个功能蛋白质进行的基因本体论分析表明,纳米金可能会影响细胞RNA转录过程及能量代谢调节,诱导细胞产生免疫响应,进而对细胞的生理过程产生影响。 The aim of the present study is to investigate the mechanism of interactions between gold nanoparticles(GNPs) and human dermal fibroblasts-fetal(HDF-f) based on proteomics technology combining bioinformatics analysis.20nm GNPs was prepared by sodium citrate reducing chloroauric acid at first.Then Methylthiazoltetrazolium(MTT) assay and flow cytomtery were applied to evaluate cytotoxicity and the influence on cell cycle and apoptosis by GNPs.Finally,differentially expressed proteins in HDF-f treated with GNPs were obtained using proteomics technology and bioinformatics tool was employed to carry out the gene ontology(GO) analysis.MTT assay showed that 200μmol 20nm GNPs caused no cytotoxicity to cells after treated for 1,4 and 8h.Flow cytometry experiment results suggested the effects of GNPs on cells were mainly on S and G2/M phase.29 proteins were identified with different expression in all three-culture periods using proteomics technology.GO analysis of 29 differentially expressed proteins indicated that GNPs may have an influence on the HDF-f through impacting the transcription processes of RNA,cholesterol and cellular energy metabolism,as well as inducing immune cell responses.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第6期1016-1020,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(30770583) 国家重点基础研究发展计划(973计划)资助项目(2009CB930000) 教育部高等学校博士学科点专项科研基金资助项目(20100092110027)
关键词 纳米金 蛋白质组学 生物信息学 GO分析 分子生物相容性 gold nanoparticles proteomics bioinformatics gene ontology molecular biocompatibility
  • 相关文献

参考文献15

  • 1Daniel M C, Astruc D. [J]. Chem Rev, 2004, 104(1):293-346.
  • 2Lu X Y, Bao X, Huang Y, et al. [J]. Biomaterials, 2009, 30(2) :141-148.
  • 3BonominiM, Pavone B, Sir.olli V, et al. [J]. J Proteome Res, 2006, 5(10):2666-2674.
  • 4Xu J L, Khor K A, Sui J J, et al. [J]. Proteomics, 2008, 8(20): 4249-4258.
  • 5Xu J L, Khor K A, Sui J J, et al. [J]. Biomaterials, 2009, 30(29) :5385-5391.
  • 6Dinnes D L M, Marcal H, Mahler S M, et al. [J]. J Biomed Mater Res A, 2007,80A.. 895-908.
  • 7Lei Z D, Dai Y. [J]. BMC Bioinformatics, 2006, 7:491.
  • 8Lu X Y, Lu H Q, Zhao L F, et al. [J]. Biomaterials, 2010, 31:1965-1973.
  • 9Qu Y H, Lv X Y. [J]. Biomed Mater, 2009, 4:025007.
  • 10http://www, ncbi. nlm. nih. gov/gene/10476.

同被引文献135

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部