期刊文献+

基于有效特征集选择的说话人识别

GMM and MMI Merged Speaker Identification
下载PDF
导出
摘要 常用的文岙无关的说话人识别系统中,高斯混合模型是一种常用的有效模型,其在常用的说话人识别系统中具有很广泛的应用,但是典型的GMM模型的识别时间较长,其识别性能尚待提高。为了进一步提高说话人识别系统的性能,练合语音数据的分布特性和log10(·)函数曲线的分布特性提出了一种有效特征集的选择方法,实验结果证明1了提出的选择算法的有效性。 In speaker identificatoin system, GMM is a frequently-sed modal and its application is abroad,but typical GMM modal need much speech used tobe recognized,so we can see that its performance need to be improved..So to improve the performance of speaker recognition system, Condsidering distribution character of speech data and loglO (.) function,an effective feature set extract method is put forward and its effectiveness is proved by experiments.
作者 孙彦群 俞一彪 SUN Yan-qun, YU Yi-biao (School of Electronic Information Engineering, Soochow University, Suzhou 215006, China)
出处 《电脑知识与技术》 2011年第4期2360-2362,共3页 Computer Knowledge and Technology
关键词 说话人识别 GMM 概率选择 有效特征集 排序 speaker identification GMM probability select effective feature set sort
  • 相关文献

参考文献16

  • 1Kenny P,Boulianne G,Ouellet P,et alJoint factor analysis versus eigenchannels in speaker recognition[J].IEEE Transactions on Audin,Speech and Language Processing,2007,vol.15,no.4:1435-1447.
  • 2Kuo-Hwei You,WANG Tai-wei.Combination of Autocorrelation-Based Features and Projection Measure Technique for Speaker IdentiGcation[J].IEEE Transactions on Speech and Audio Processing,2005,13(4):565-574.
  • 3W.M.Campbell,D.A.Reynolds.Support Vector Machines Using GMM Supervecters for Speaekr Verification[J].IEEE,2006,13(5):308-311.
  • 4亢明,汪成亮,陈娟娟.基于动态阈值失量量化的说话人识别[J].计算机应用,2009,29(1):146-148. 被引量:4
  • 5吴庆棋,林江云.基于聚类优化GMM提高说话人识别性能的研究[J].计算机技术与发展,2009,19(4):35-37. 被引量:3
  • 6郭武,戴礼荣,王仁华.说话人识别中的串行因子分析[J].模式识别与人工智能,2009,22(4):514-518. 被引量:2
  • 7C.Arun Kumar,B.Bharathi,T.Nagaranjan.A Discriminative GMM Technique using Product of Likelihood Gaussians[J].IEEE,2009,Page(s):1-6.
  • 8Chi-Sang Jung,Mo Young Kim,Hong-Goo kang.Selecting Feature Frames for Automatic Speaker Recognition Using Mutual Information[J].IEEE Transactions on Audio,Speech and Language Processing,August 2010,18(6):1332-1340.
  • 9Nagarajan T,Douglas 05haughnessy.Dicriminative MLE training using a product of Gaussian likelihood[J].in INTERSPEECH,2006.Pittsburgh,Pensylvania,USA,2006:601-604.
  • 10H.C.Peng,F.Long,and C.Ding,'Feature selection based on mutual information:Criteria of max-dependency,max-relevance,and min-redundancy,lEEEtrans.Pattern Analysis and Machine Intel] igen,2005(27):1226-1238.

二级参考文献22

  • 1[美]Z.米凯利维茨.演化程序:遗传算法和数据编码的结合[M].周家驹,何险峰,译.北京:科学出版社,2000.
  • 2HAN WEI, CHAN CHEONG-FAT, CHOY CHIU-SING, et al. An efficient MFCC extraction method in speech recognition [ C]// ISCAS 2006: Proceedings of 2006 IEEE International Symposium. Hong Kong: IEEE Press 2006:145 - 148.
  • 3VASUKI A, VANATHI P T. A review of vector quantization techniques[J]. Potentials, IEEE, 2006,25(4):39-47.
  • 4PAN ZHI-BIN, KOTANI K. Constructing better partial sums based on energy-maximum criterion for fast encoding of VQ[ C]//APCCAS 2006: IEEE Asia Pacific Conference Circuits and Systems. Singapore: IEEE Press, 2006:1563 - 1566.
  • 5LI JIU-HUA, LING NAM. A novel VQ codebook design technique [ C]//IEEE Transactions Consumer Electronics. Rosemont, IL: IEEE Press, 1997, 43(4) : 1206 - 1212.
  • 6Reynolds D A,Rose R C. Robust text- independent speaker identification using Gaussian mixture speaker models[J ]. IEEE Trans. Speech Audio Processing, 1995,3 (1) : 72 - 83.
  • 7Reynolds D A. Speaker identification and verification using Gaussian mixture speaker models[ J ]. Speech Communication, 1995,17:91 - 108.
  • 8Doddington G R, Przybocki M A,Martin A F,et al. The NIST speaker recognition evaluation - overview, methodology,systems, results, perspective [ J ]. Speech Communication, 2000,31:225 - 254.
  • 9Yared G F G, Violaro F, Sousa L C. Gaussian elimination algorithm for HMM complexity reduction in continuous speech recognition systems [ C ]//Ninth European Conference on Speech Communication and Technology. Brazil: ISCA, 2005: 377 - 380.
  • 10Fisher W, Zue V, Bernstein J, et al. An acoustic-phonetic database[C]//JASA, suppl. A. [s. l. ] : Is. n. ] ,1986.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部