摘要
常用的文岙无关的说话人识别系统中,高斯混合模型是一种常用的有效模型,其在常用的说话人识别系统中具有很广泛的应用,但是典型的GMM模型的识别时间较长,其识别性能尚待提高。为了进一步提高说话人识别系统的性能,练合语音数据的分布特性和log10(·)函数曲线的分布特性提出了一种有效特征集的选择方法,实验结果证明1了提出的选择算法的有效性。
In speaker identificatoin system, GMM is a frequently-sed modal and its application is abroad,but typical GMM modal need much speech used tobe recognized,so we can see that its performance need to be improved..So to improve the performance of speaker recognition system, Condsidering distribution character of speech data and loglO (.) function,an effective feature set extract method is put forward and its effectiveness is proved by experiments.
作者
孙彦群
俞一彪
SUN Yan-qun, YU Yi-biao (School of Electronic Information Engineering, Soochow University, Suzhou 215006, China)
出处
《电脑知识与技术》
2011年第4期2360-2362,共3页
Computer Knowledge and Technology
关键词
说话人识别
GMM
概率选择
有效特征集
排序
speaker identification
GMM
probability select
effective feature set
sort