摘要
针对噪声环境下一些声目标识别技术性能严重下降的问题,提出了一种基于一阶补偿的径向基函数网络模型,并给出了该网络参数选择方法。实际应用表明,这种神经网络对噪声具有较强的鲁棒性,与传统的径向基函数网络相比,其识别性能等同于信噪比提高大约10~15dB。
A more robust passive acoustic target recognizer is researched to solve the problem of performance degradation in a noisy environment. The model of RBFN with first\|order equalization is presented and the algorithms for estimating the model parameters are given. Experimental results show that this model is more robust to noise, with respect to a conventional RBFN recognizer, this network makes an improvement in recognition performance which is equivalent to about 15dB gain in SNR.
出处
《系统工程与电子技术》
EI
CSCD
1999年第8期12-14,共3页
Systems Engineering and Electronics
关键词
目标识别
信噪比
鲁棒性
雷达
Passive acoustic target recognition\ \ Radial basis function\ \ Robustness