期刊文献+

区间二型模糊相似度与包含度 被引量:4

Similarity and inclusion measures between IT2 FSs
原文传递
导出
摘要 相似度与包含度是模糊集合理论中的两个重要概念,但对于二型模糊集合的研究还较为少见.鉴于此,提出了新的区间二型模糊相似度与包含度,首先选择了二者的公理化定义;然后基于公理化定义提出了新的计算公式,并讨论了二者的相互转换关系;最后通过实例来验证二者的性能,并将区间二型模糊相似度与Yang-Shih聚类方法相结合,用于高斯区间二型模糊集合的聚类分析,得到了合理的层次聚类树.仿真实例表明新测度具有一定的实用价值. The similarity and inclusion measures between fuzzy sets are two important concepts in fuzzy set theory, but little effort as to them has been made on type-2 fuzzy sets. Therefore, a similarity measure and an inclusion measure between interval type-2 fuzzy sets (IT2 FSs) are proposed. Firstly, the axiomatic definitions of two measures are selected. Then, based on the selected definitions, the computation formulas are proposed, and four theorems that two measures can be transformed by each other are demonstrated. Finally, examples are presented to validate their performance and combine the proposed similarity measure with Yang and Shih's clustering method for an application to clustering analysis of Gaussian IT2 FSs, and a reasonably hierarchical clustering tree in different α-levels is obtained. Simulation results show the practicability of the proposed measures.
出处 《控制与决策》 EI CSCD 北大核心 2011年第6期861-866,共6页 Control and Decision
基金 国家自然科学基金项目(60674057) 中央高校基本科研业务费专项基金项目(SWJTU09ZT11)
关键词 区间二型模糊集合 相似度 包含度 聚类 interval type-2 fuzzy set similarity measure inclusion measure clustering
  • 相关文献

参考文献12

  • 1Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(2): 199-249.
  • 2Liang Q, Mendel J M, Type-2 fuzzy logic systems theory design[J]. IEEE Trans on Fuzzy Systems, 2000, 8(5): 535- 550.
  • 3Mendel J M, John R I, Liu E Interval type-2 fuzzy logic systems made simple[J]. IEEE Trans on Fuzzy Systems, 2006, 14(6): 808-821.
  • 4Zeng W, Li H. Inclusion measures, similarity measures, and the fuzziness of fuzzy sets and their relations[J]. Int J of Intelligent Systems, 2006, 21(6): 639-653.
  • 5Zadeh L A. Similarity relations and fuzzy ordering[J]. Information Sciences, 1971, 3(2): 177-200.
  • 6Bustince H. Application to approximate reasoning based on interval-valued fuzzy sets[J]. Int J of Approximate Reasoning, 2000, 23(3): 137-209.
  • 7Pappis C E Karacapilidis N I. A comparative assessment of measures of similarity of fuzzy values[J]. Fuzzy Sets and Systems, 1993, 56(2): 171-174.
  • 8Zwick R, Carlstein E, Budescu D V. Measures of similarity among fuzzy concepts: A comparative analysis[J], lnt J of Approximate Reasoning, 1987, 1(22): 221-242.
  • 9Zeng W, Li H. Relationship between similarity measure and entropy of interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 2006, 157(11): 1477-1484.
  • 10Yang M S, Shih H M. Cluster analysis based on fuzzy relations[J]. Fuzzy Sets and Systems, 2001, 120(2): 197- 212.

同被引文献24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部