期刊文献+

Zn^(2+)改性丝光沸石对甲基橙的吸附性能研究 被引量:6

Methyl Orange Adsorption by Zn^(2+) Exchanged Mordenite
下载PDF
导出
摘要 采用盐熔融法,将Zn2+交换丝光沸石分子筛制备Zn2+改性丝光沸石吸附材料。通过该材料对甲基橙的吸附动力学和吸附热力学研究,了解其吸附机理。研究结果表明:Zn2+改性丝光沸石对甲基橙的吸附动力学可用拟二级动力学方程来描述,计算值与试验值吻合较好,相关系数达到0.99;Zn2+改性丝光沸石对甲基橙的吸附等温线均符合Langmuir和Freundlich方程,室温下相关系数均大于0.9。根据不同温度下的热力学平衡常数,推算出Zn2+改性丝光沸石对甲基橙的吸附吉布斯自由能变ΔG0<0,吸附焓变ΔH0>0,表明吸附为自发的吸附过程,升温有利于吸附的进行,且吸附过程主要是物理吸附。 Zn2+ exchanged mordenite was obtained by zinc ions exchanged with mordenite through salt melting procedure.The adsorption kinetics and thermodynamics of the methyl orange adsorption by Zn2+ exchanged mordenite were studied to assess the adsorption mechanisms.The kinetics of Zn2+ exchanged mordenite can be best described as pseudo-second order kinetics model.The adsorption capacity calculated by the model was consistent with the actual measurement,with the correlation coefficient higher than 0.99.The equilibrium data were analyzed by using the Langmuir and Freundlich model,which revealed that both Langmuir and Freundlich model were suitable to describe the methyl orange adsorption by Zn2+ exchanged mordenite with the correlation coefficients higher than 0.9.According to the dependence of thermodynamic equilibrium constant on temperatures,the thermodynamic parameters associated with the adsorption process were calculated.The negative values of ΔG0 indicated that the overall adsorption processes were spontaneous.And the positive value of ΔH0 showed that the adsorption processes were endothermic in nature and the adsorption mechanisms were dominated by physical adsorption.
出处 《矿物学报》 CAS CSCD 北大核心 2011年第2期284-290,共7页 Acta Mineralogica Sinica
基金 高校服务海西重点建设项目(A102)
关键词 沸石 吸附 甲基橙 吸附动力学 吸附热力学 mordenite adsorption methyl orange adsorption kinetics adsorption thermodynamics
  • 相关文献

参考文献17

  • 1McKay G. The adsorption of dyestuffs from aqueous solution using activated carbon: analytical solution for batch adsorption based on external mass transfer and pore diffusion [J]. Chem Eng, 1983, 27(3) : 187-196.
  • 2Allen S J. Types of adsorbent materials [ A ]. McKay G. Use of Adsorbents for the Removal of Pollutants from Wastewaters [ M ]. Boca Raton: CRC Press, 1996: 59-97.
  • 3Ersoy B, Celik M S. Effect of hydrocarbon chain length on adsorption of cationic surfactants onto clinoptilolite [J]. Clays Clay Min, 2003, 51(2) : 172-180.
  • 4黄妙良,徐纯芳,王玲玲,林建明,吴季怀.天然沸石负载二氧化钛光催化剂的制备与性能研究[J].矿物学报,2004,24(4):329-333. 被引量:23
  • 5Huang M L, Xu C F, Wu Z B, et al. Photocatalytie discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite [J]. Dyes and Pigments, 2008, 77(2) : 327-334.
  • 6徐纯芳,黄妙良,程应汉.沸石负载TiO_2催化剂降解有机物的研究[J].化工新型材料,2004,32(5):29-32. 被引量:12
  • 7Aksu Z. Biosorption of reactive dyes by dried activated sludge : Equilibrium and kinetic modeling [ Jl- Bioehem Eng, 2001,7 ( 1 ) : 79-84.
  • 8Wu F C, Tseng R L, Juang R S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal Ions on chitosan [ J]. Water Res, 2001, 35(3) : 613-618.
  • 9Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Res, 2004, 34 (3) : 735-742.
  • 10Li Q, Yue Q Y, Su Y, et al. Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite [J]. Chem Eng, 2010, 158(3) : 489-497.

二级参考文献24

  • 1[1]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1: 1~21.
  • 2[2]Vohra M S, Tanaka K. Photocatalytic degradation of aqueous pollutants using silica-modified TiO2 [J]. Water Research, 2003, 37 (16): 3992~3996.
  • 3[4]Nozawa M, Tanigawa K, Hosomi M, Chikusa T, Kawada E. Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon [J].Water Science and Technology, 2001, 44(9):127~133.
  • 4[5]Robert D, Piscoro A, Heintz O, Weber J V. Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light [J]. J. Catalysis Today, 1999, 54(2-3): 291~296.
  • 5[6]Ooka C, Yoshida H, Suzuki K, Hattori T. Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water[J].Microporous and Mesoporous Materials, 2004, 67:143~150.
  • 6[8]Li J Y, Chen C H, Zhao J C, Zu H Y, Ding Z. Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation [J]. Science in china (Series B), 2002, 45(4): 445~448.
  • 7[10]Corma A, Garcia H. Zeolite-based photocatalysts [J]. Chem Comm,2004,(13):1443~1459.
  • 8[11]Anandan S, Yoon M. Heteropolyacid-encapsulated TiHY zeolite as an inorganic photosynthetic reaction center mimicking the plant systems [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,160:181~184.
  • 9[12]Anpo M, Takeuchi M, Ikeue K, Dohshi S. Design and development of titanium oxide photocatalysts operatingunder visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and T/ zeolite catalysts [J]. Current Opinion in Solid State and Materials Science, 2002, 6 :381~388.
  • 10[14]Yan G Y, Wang X X, Fu X Z, Li D Z. A primary study on the photocatalytic properties of HZSM-5 zeolite [J].Catalysis Today, 2004, 93~95:851~856.

共引文献32

同被引文献95

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部