摘要
The mutual destabilization between complex hydrides and lithium amide has been comprehensively reported. In this paper, CeH2 doped Li-Mg-N-H/NaAlH4 composite was successfully synthesized by ball milling Li-Mg-N-H mixture and NaAlH4 in a molar ratio of 1:2. It was found that a total of 5 wt.% of hydrogen could be desorbed from the newly synthesized composite with a three-step reaction. Temperature-programmed-desorption (TPD) measurements showed that the composite ball milled for 10 min began to desorb hydrogen below 100 °C, which was about 75 °C lower than the pristine materials. XRD analysis revealed that NaAlH4 firstly reacted with LiH to yield Na2LiAlH6 and Al below 150 °C, then the newly developed Na2LiAlH6 reacted with Mg(NH2)2 to form NaH, Al, and Li2MgN2H2 in the temperature range of 180–250 °C. From 200 to 300 °C, the newly formed Al and Li2MgN2H2 reacted further to form Li2NH and some stable phase (AlN and Mg3N2). The H-cycling properties of the composite were further investigated by a standard Sievert’s type apparatus at 150, 200 and 250 °C, respectively. Finally, the reversibility of the newly synthesized composite was discussed.
The mutual destabilization between complex hydrides and lithium amide has been comprehensively reported. In this paper, CeH2 doped Li-Mg-N-H/NaAlH4 composite was successfully synthesized by ball milling Li-Mg-N-H mixture and NaAlH4 in a molar ratio of 1:2. It was found that a total of 5 wt.% of hydrogen could be desorbed from the newly synthesized composite with a three-step reaction. Temperature-programmed-desorption (TPD) measurements showed that the composite ball milled for 10 min began to desorb hydrogen below 100 °C, which was about 75 °C lower than the pristine materials. XRD analysis revealed that NaAlH4 firstly reacted with LiH to yield Na2LiAlH6 and Al below 150 °C, then the newly developed Na2LiAlH6 reacted with Mg(NH2)2 to form NaH, Al, and Li2MgN2H2 in the temperature range of 180–250 °C. From 200 to 300 °C, the newly formed Al and Li2MgN2H2 reacted further to form Li2NH and some stable phase (AlN and Mg3N2). The H-cycling properties of the composite were further investigated by a standard Sievert’s type apparatus at 150, 200 and 250 °C, respectively. Finally, the reversibility of the newly synthesized composite was discussed.
基金
Project supported by the Hi-Tech Research and Development Program of China (2009AA034400)
the National Basic Research Program of China (2010CB631305) under the Ministry of Science and Technology of China