期刊文献+

基于小波和NSCT的图像自适应阈值去噪方法 被引量:2

Adaptive Threshold for Image Denoising Based on Wavelet and Nonsubsampled Contourlet Transform
下载PDF
导出
摘要 提出了一种基于小波和非下采样Contourlet变换(NSCT)相结合的图像自适应阈值去噪方法。先用小波估计噪声图像的噪声强弱,再根据噪声的强弱以及NSCT的分解特点及系数所在邻域的特性,给出不同尺度不同方向的自适应阈值。仿真实验结果表明,与小波硬阈值、Contourlet硬阈值和基于非下采样Contourlet硬阈值去噪方法比较,该方法不仅提高了图像的峰值信噪比,减少了Gibbs现象,而且图像视觉效果也明显改善。 A new local adaptive threshold estimation method for image denoising based on the wavelet transform (WT) and Nonsubsampled Contourlet Transform(NSCT) is proposed. The new method uses wavelet to estimate the noise strength of noisy images, then determines the shrinkage threshold according to the strength of noise, the neigilbouring NCST coefficients, the scale of the coefficients and the noise level. Compared with the wavelet hard-thresholding, the contourlet hard-thresholding and the NSCT hard-thresholding denoising method, the proposed method can obviously reduce the Gibbs phenomenon and superiors both in vision and in PSNR(Peak Signal - to- Noise Ratio).
出处 《电讯技术》 北大核心 2011年第5期67-70,共4页 Telecommunication Engineering
基金 科技部国际科技合作项目(2009DFA12870) 教育部促进与美大地区科研合作与高层次人才培养项目~~
关键词 图像去噪 小波变换 NSCT 自适应阈值 image denoising wavelet transform NSCT adaptive threshold
  • 相关文献

参考文献6

  • 1Donoho D L, Johhstone I M. Ideal special adaptation by wavelet shrinkage[J]. Biometrika, 1994,81(3) :425 - 455.
  • 2Do M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation [ J ]. IEEE. Transactions on Image Pmcessing,2005, 14(12) :2091 - 2106.
  • 3Cunha A L da, Zhou J P, Do M N. The nonsubsampled Con- tourlet transform: Theory, design and application [ J ]. Transactions on Image Processing,2006,15(10) :3089 - 3101.
  • 4Shenqian W, Yuanhua Z, Daowen Z. Adaptive shrinkage de- noising using neighbouriaood characteristic [ J ]. Electronics Letters, 2002,38( 11 ) : 502 - 503.
  • 5Jean- Luc Starck, Candes E J, Donoho D L. The curvelet transform for image denoising[J]. IEEE Transactions on Im- age Processing, 2002, 11(6): 670-684.
  • 6LI Kang, GAO Jinghuai, WANG Wei. Adaptive Shrinkage for Image Denoising Based on Contourlet Transform [ J ]. IEEE Transactions on Image Processing, 2008,2(12) :995 - 999.

同被引文献21

  • 1于帅珍,沈建国.基于小波域的自适应彩色图像双重水印算法[J].微计算机信息,2006(01S):190-192. 被引量:11
  • 2董彬,林小竹,徐凤.基于人类视觉系统的小波域数字水印算法[J].计算机工程,2006,32(24):138-140. 被引量:10
  • 3李天荣.一种适用于GIS中矢量数据的数字水印算法[J].电子科技,2007,20(11):26-29. 被引量:1
  • 4Cvejic N,Seppnen T. Increasing robustness of LSB audiosteganography by reduced distortion LSB coding[J].Journalof Universal Computer Science,2005,(01):56-65.
  • 5Bender W,Gruhl D,Morimoto N. Techniques for da-ta hiding[J].IBM Systems Journal,1996,(3/4):313-336.
  • 6Althanasios Nikolaidis,Ioannis Pitas. Asymptoticallly Opti-mal Detection for Addtive Watermarking in the DCT andDWT Domains[J].IEEE Transactions on Image Processing,.
  • 7Joseph J K,Ruanaidh K O,Pun T. Ratation,scale andtranslation invariant spread spectrum digital image water-marking[J].Signal Processing,1988,(03):303-318.
  • 8Kim Y,Kwon O,Park R. Wavelet Based WatermarkingMethod for Digital Images Using the HumanVisual System[A].
  • 9Pawlak M,Xin Y. Robust Image Watermarking:AnInvariant Domain approach[A].Canadian:The Inter-national Association,.
  • 10金聪.数字水印理论与技术[M]北京:清华大学出版社,2008113-138.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部