期刊文献+

基于钙化点信息的乳腺病灶类型识别算法

Recognition Algorithm of Breast Disease Focus Based on Calcifications Information
下载PDF
导出
摘要 为了有效地对乳腺恶性病变做出早期诊断,提出一种基于钙化点信息的乳腺病灶类型识别算法。算法以钙化点的形状信息、纹理信息、空间分布信息为特征量,以支持向量机为工具对钙化点进行恶性与良性分类。对开放乳腺图像数据库MIAS的仿真实验表明,算法的检出率超过86%,错检率不足4%,达到理想的识别效果。 In this paper,a new recognition algorithm of breast disease focus based on calcifications information is proposed in order to effectively diagnose the early malignant breast disease.In this recognition algorithm,the characteristic quantities are shape information,texture information and space distribution information of the calcifications and the tool supported vector machine is employed to classify the calcifications is benign or malignant.The image samples from the mammogram database MIAS are detected by this algorithm.The simulation results are that the rate of detection calcifications was more than 86% and the false positive was less than 4%,which show the effectiveness of the proposed recognition algorithm.
作者 马慧彬 丛岭
机构地区 佳木斯大学
出处 《电脑与信息技术》 2011年第3期14-16,27,共4页 Computer and Information Technology
基金 佳木斯大学科研项目(L2009-137)
关键词 钙化点 特征量 支持向量机 分类 calcifications characteristic quantity support vector machine classification
  • 相关文献

参考文献7

二级参考文献46

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部