期刊文献+

基于空间连续尺寸场的动态均匀化方法

HOMOGENIZATION METHOD FOR DYNAMIC PROBLEMS BASED ON CONTINUOUS SIZE FIELD
原文传递
导出
摘要 以均匀化理论为基础,将各向同性蜂窝状微孔结构作为材料描述方式,提出了基于空间连续尺寸场的动态均匀化方法,克服了动态优化中的局部模态现象.不同于将微孔结构尺寸变量依附于单元或节点,采用物质点对应的微孔尺寸作为设计变量,基于修正过滤公式的形函数,构造了空间连续的尺寸场,克服了棋盘格等数值不稳定性问题.基于复合函数求导法则,推导了总刚度阵、总质量阵等敏度表达式.以动态结构响应量最小化或最大化为目标,体积比为约束,建立了动态结构拓扑优化模型,通过二维结构数值算例对理论方法进行验证.结果表明,方法在连续体结构动态拓扑优化设计中具有可行性和有效性. Based on homogenization theory,hexagonal microstructure with isotropic behavior is adopted as description of the macroscopic material.A new topological optimization method of continuum structure for dynamic problems is presented based on continuous size field.The proper character of the microcosmic cell is numerically validated to avoid localized modes.The size of the hexagonal cell for the material point instead of element or node is applied as design variables.Continuity of design variables field is ensured by interpolation of the modified filtering interpolation functions.Checkerboard patterns concerned in most topological optimization methods are avoided naturally.Sensitivities of global stiffness matrix,global mass matrix and so on are derived according to calculation method for partial derivative of compound function.Topological optimization models are established where dynamic structural responses are taken as objective and prescribed volume fraction is referred to as constraint conditions.Numerical examples show that the proposed method is feasible and effective in dynamic topological optimization design of continuum structure.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第3期299-305,共7页 Chinese Journal of Solid Mechanics
基金 中央高校基本科研业务费专项资金资助
关键词 拓扑优化 均匀化理论 连续体结构 频率优化 过滤函数 topology optimization homogenization theory continuum structure frequency optimization filtering function
  • 相关文献

参考文献22

  • 1Ma Z D, Kikuchi Noboru, Cheng H C. Topological design for vibrating structures [J]. Computer Meth- ods in Applied Mechanics and Engineering, 1995, 121(1): 259 280.
  • 2Lars A Krog, Niels Olhoff. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives [J]. Computers and Structures, 1999, 72(4-5): 535-563.
  • 3Min S, Nishiwaki S, Kikuchi N. Unified topology design of static and vibrating structures using mul- tiobjective optimization [J]. Computers and Struc- tures, 2000, 75(1): 93-116.
  • 4Xie Y M, Steven G P. Evolutionary structural opti- mization for dynamic problems [J]. Computers and Structures, 1996, 58(6): 1067-1073.
  • 5Pedersen N L. Maximization of eigenvalues using to- pology optimization [J]. Structural and Multidiscipli- nary Optimization, 2000, 20(1): 2-11.
  • 6朱继宏,张卫红,邱克鹏.结构动力学拓扑优化局部模态现象分析[J].航空学报,2006,27(4):619-623. 被引量:25
  • 7彭细荣,隋允康.有频率禁区的连续体结构拓扑优化[J].固体力学学报,2007,28(2):145-150. 被引量:16
  • 8Jog C S. Topology design of structures subject to pe- riodic loading [J]. Journal of Sound and Vibration, 2002, 253(3): 687-709.
  • 9Du J B, Olhoff Niels. Minimization of sound radiation from vibrating hi-material structures using topology optimization [J].Structural and Multidisciplinary Optimization, 2007, 33(4-5): 305-321.
  • 10彭细荣,隋允康.频率响应位移幅值敏度分析的伴随法[J].应用力学学报,2008,25(2):247-252. 被引量:7

二级参考文献42

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部