期刊文献+

SPH-FEM接触算法在冲击动力学数值计算中的应用 被引量:25

APPLICATION OF SPH-FEM CONTACT ALGORITHM IN IMPACT DYNAMICS SIMULATION
原文传递
导出
摘要 为了充分发挥光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics,SPH)易于处理大变形以及有限元(Finite Element Method,FEM)计算精度和效率高的优势,论文基于无网格粒子接触算法,在有限元节点处设置背景粒子,通过接触力的方式计算SPH粒子和有限单元之间的接触问题.使用SPH-FEM接触算法分别对球头钢弹斜冲击钢板和平头钢弹正冲击钢板的情况进行了三维数值计算,SPH采用完全变光滑长度算法,FEM采用矩阵向量积的EBE(Element-By-Element)算法.将SPH-FEM接触算法的计算结果与LS-DYNA的计算结果以及实验结果进行了对比验证. Coupling of Smoothed Particle Hydrodynamics(SPH) and Finite Element Method(FEM) can make full use of the superiority of SPH in dealing with large deformation and the high accuracy and efficiency of FEM.This paper calculates the contact between SPH particles and finite elements using meshless particle contact method,and background particles are assigned in the position of FE nodes.The oblique impact between spheral-nosed projectile and steel target and the normal impact between blunt-nosed projectile and steel target are calculated using the SPH-FEM contact algorithm.The fully variable smoothing lengths algorithm is used in SPH and the EBE algorithm is used in FEM.The numerical results of LS-DYNA and the experimental observations validate the accuracy of the SPH-FEM contact algorithm.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第3期319-324,共6页 Chinese Journal of Solid Mechanics
基金 国家973计划项目(61338) 国家教育部NCET基金项目 第二炮兵工程学院创新性探索研究项目(KX2008172)资助
关键词 光滑粒子流体动力学方法 有限元方法 接触 冲击 背景粒子 smoothed particle hydrodynamics finite element method contact impact background particle
  • 相关文献

参考文献17

  • 1Christiansen E L, Friesen L. Penetration equations for thermal protection materials[J]. International Journal of Impact Engineering, 1997, 20: 153-164.
  • 2Christiansen E L, Kerr J H. Projectile shape effects on shielding performance at 7 km/s and 11 km/s [J]. International Journal of Impact Engineering, 1997,20. 165 -172.
  • 3Hans U Mair. Review: Hydrocodes for structure response to underwater explosions[J]. Shock and Vibration, 1999, 6: 81-96.
  • 4Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99: 235-394.
  • 5Belytschko T, Liu W K, Moran B. Nonlinear Finite Elements for Continua and Structures [M]. New York: John Wiley and Sons, 2000: 341-350.
  • 6Larry Libersky D, Phil Randles W, Ted Carney C, David Dickinson L. Recent improvements in SPH modeling of hypervelocity impact [J].International Journal of Impact Engineering, 1997, 20: 525-532.
  • 7Stellingwerf R F, Wingate C A. Impact modeling with smooth particle hydrodynamics [J]. Interna- tional Journal of Impact Engineering, 1993, 141 707-718.
  • 8Monaghan J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159: 290-311.
  • 9Monaghan J J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005,68 : 1703-1759.
  • 10Attaway S W. Coupling of smoothed particle hydro-dynamics with the finite element method [J]. Nucle- ar Engineering and Design, 1994, 150: 199-205.

二级参考文献17

  • 1Lucy L B. A numerical approach to the testing of the fission hypothes[J]. The Astronomical Journal, 1977, 82(12):1013 - 1024.
  • 2Gingold R A, Monaghan J J. Smoothed particie hydrodynamics: Theory and application to non-spherical stars[ J]. Mon Not Rastr Soc, 1977,181 : 375 - 389.
  • 3Gingold R A, Monaghan J J. Kernal estimates as a basis for general particle methods in hydrodynamics[J]. Comput Phys, 1982, 46: 429 - 453.
  • 4Evrard A E. Beyond N-body: 3D cosmological gas dynamics[J]. Mon Not Rastr Soc, 1988, 235:911 -934.
  • 5Hemquist L. Some cautionary remarks about smoothed particle hydrodynamics[J]. The Astronomical Journal, 1993, 404:717- 722.
  • 6Nelson R P, Papaloizou J C. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics [ J ]. Mon Not Rastr Soc, 1994,270:1 - 29.
  • 7Sernal A, Alimi J M, Chieze J P. Adaptive smooth particle hydrodynamics and particle-particle coupled codes: Energy and entropy conservation[ J]. The Astronomical Journal, 1996, 461 : 884 - 896.
  • 8Springel V, Hernquist L. Cosmological smoothed particle hydrodynamics simulations: the entrory equation [ J ]. Mon Not Rastr Soc, 2002, 333 : 649 - 667.
  • 9Thomas P A, Couchman H M P. Simulating the formation of a cluster of galaxies[ J]. Mon Not Rastr Soc, 1992,257 : 11 - 31.
  • 10Monaghan J J. SPH compressible turbulence[J]. Mon Not Rastr Soc, 2002, 335(52):843 - 869.

共引文献21

同被引文献177

引证文献25

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部