期刊文献+

CdSe@ZnS量子点在果蝇及其幼虫体内的分布 被引量:1

Distribution of CdSe@ZnS QDs in adult drosophila and their stage-1 larva
下载PDF
导出
摘要 用同步辐射微束X射线荧光(μ-SRXRF)技术结合激光扫描共聚焦显微成像(LSCM)技术研究了经CdSe@ZnS量子点口暴露的果蝇成虫及其子代一期幼虫体内的微区分布。μ-SRXRF分析表明,果蝇成虫摄取CdSe@ZnS量子点后,果蝇成虫胃肠道组织中有Cd、Zn和Se元素的富集,说明量子点经果蝇口服暴露后主要富集在肠道和生殖道部位。LSCM观察表明,CdSe@ZnS量子点暴露后成虫所产一期幼虫的生殖部位(精巢)有明显的荧光增强信号,表明量子点暴露能够经果蝇母体转运到子代。μ-SRXRF分析技术为纳米颗粒在活体内转运研究提供了很好的分析手段。 In this work,CdSe@ZnS quantum dots(QDs) distributed in the QDs-exposed adult drosophila and their stage-1 larva were characterized by synchrotron radiation micro X-ray fluorescence(μ-SRXRF) and laser scanning confocal microscope(LSCM),respectively.The CdSe@ZnS QDs were exposed via the mouth to the adult drosophila.The μ-SRXRF elemental mapping of Cd,Se and Zn revealed that the elements were concentrated in the intestinal and reproductive system,indicating that QDs could accumulate in the intestinal and reproductive system.Obvious fluorescence signals were observed in the testis of stage-1 larva by LSCM technique.The results indicate the QDs via oral exposure could induce potential impact on placenta translocation and reproductive system.The results show that μ-SRXRF analysis is a novel method for the investigation of translocation of nanoparticle in the living organism.
出处 《核技术》 CAS CSCD 北大核心 2011年第6期415-418,共4页 Nuclear Techniques
基金 国家自然科学基金(10905064 10975148和20805048) 科技部973项目(2011CB933400) 中国科学院知识创新重大项目(KJCX3.SYW.N3)资助
关键词 μ-SRXRF CdSe@ZnS量子点 果蝇 微区分布 μ-SRXRF CdSe@ZnS quantum dot Drosophila Placenta translocation
  • 相关文献

参考文献20

  • 1Zhu M T, Feng W Y, Wang Y, et al. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment[J]. Toxicol Sci, 2009, 107(2): 342-351.
  • 2Saunders M. Transplacental transport of nanomaterials[J].Nanomed Nanobiotechnol, 2009, 1(6): 671-684.
  • 3Semmler-Behnke M, Fertsch S, Schmid G, et al. Uptake of 1.4 nm versus 18 nm gold nanoparticles in secondary target organs is size dependent in control and Pregnant rats after intratrecheal or intravenous application[C]. In: EuroNanoForum-Nanotechnology in Industrial Applications. Luxembourg: European Communities, 2007, 102-104.
  • 4Wick P, Malek A, Manser P, et al. Barrier Capacity of Human Placenta for Nanosized Materials[J]. Environ Health Perspect, 2010, 118(3): 432-436.
  • 5Bai Y H, Zhang Y, Zhang J P, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility[J]. Nat Nanotech, 2010, 5(9): 683-689.
  • 6Carrillo-Carrion C, Cardenas S, Simonet B M, et al. Quantum dots luminescence enhancement due to illumination with UV/Vis light[J]. Chem Commun, 2009, (35): 5214-5226.
  • 7Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice[J]. Bioconjugate Chem, 2004, 15(1): 79-86.
  • 8Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J], Nat Biotechnol, 2004, 22(8): 969-976.
  • 9Larson D R, Zipfel W R, Williams R M, et al. Watersoluble quantum dots for multiphoton fluorescence imag- ing in vivo[J]. Science, 2003, 300(5624): 1434-1436.
  • 10Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors[J]. Environ Health Perspect, 2006, 114(2): 165-172.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部