摘要
为探讨列车高速通过大跨度双塔钢桁斜拉桥时的耦合振动效应,为同类桥梁的设计提供参考,以南宁—广州高速铁路郁江大桥(大跨度钢桁斜拉桥)为研究对象,建立了车桥系统耦合振动仿真模型.采用有限元软件ANSYS建立斜拉桥的动力分析模型,计算其自振特性;采用多体系统动力学软件SIMPACK建立德国ICE3列车的空间动力学模型;采用SIMPACK与ANSYS相结合的联合仿真方法,计算不同运行速度时车桥系统的空间耦合振动响应.结果表明:当列车分别以250,270,290和300 km/h的速度通过该桥时,其运行安全性指标均满足规范要求;动车和拖车的Sperling舒适性指标均小于2.5;该桥梁的最大竖向挠跨比为1/1 843,最大横向挠跨比为1/83 000,最大竖向和横向加速度分别为0.386和0.107 m/s2,冲击系数最大值为1.200,表明该桥梁具有足够的刚度,振动状态良好.
In order to research the coupled vibration effects when a train runs through a long-span twin tower steel truss cable-stayed bridge at a high speed to provide a reference for the design of the same type of bridges,a numerical simulation model for coupled vibration was set up by taking Yujiang River bridge,a long-span steel truss cable-stayed bridge,on Nanning-Guangzhou high-speed railway as a study object.A dynamic analysis model for the bridge was established with the finite element software ANSYS,and its natural vibration properties were analyzed.A spatial dynamic model for German ICE3 train was set up by the multi-system dynamics software SIMPACK.The spatial coupled vibration responses of a vehicle-bridge system under the conditions of different strain speeds were calculated by co-simulation based on the SIMPACK and the ANSYS.The results show that when a strain runs respectively at a speed of 250,270,290 or 300 km/h,all its safety indexes can meet standard requirements,Sperling comfort indexes of motor car and trailer both are less than 2.5.The maximum vertical and lateral deflection-span ratios are respectively 1/1 843 and 1/83 000,the maximum vertical and lateral accelerations are 0.386 and 0.107 m/s2,respectively,and the maximum impact coefficient is 1.200.All these indexes show that the bridge has a sufficient rigidity,and its vibration is in good condition.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2011年第3期385-390,共6页
Journal of Southwest Jiaotong University
基金
国家自然科学基金资助项目(51078316)
中央高校基本科研业务费专项资金资助项目(SWJTU09BR009)
关键词
郁江大桥
大跨度钢桁斜拉桥
耦合振动
联合仿真
多体系统动力学
有限元法
Yujiang River bridge
long-span steel truss cable-stayed bridge
coupled vibration
co-simulation
multi-body system dynamics
finite element method