期刊文献+

流线网络优化的变分不等式模型与算法 被引量:4

Variational Inequality Model and Algorithm for Stream Line Network Optimization
下载PDF
导出
摘要 为解决具有复杂超网络特点的流线优化问题,求解以供需匹配度最大化为目标,以能力和资源限制为约束条件的流线网络优化模型,利用向量概念,对流线网络优化模型的目标函数和约束条件进行了简化和修正,将其转换为变分不等式形式,给出了基于投影算法的求解步骤,并以某市物流节点布局规划为例进行分析.案例研究表明:利用投影算法得到的区域物流网络供需匹配度为0.999 7,高于经验比较法得到的供需匹配度0.947 6,更接近实际物流需求;并验证了基于变分不等式的流线优化模型存在唯一解. A simplified variational inequality model and its projection algorithm were proposed to optimize stream line networks that are complex hypernetworks.In the model,the objective is the matching degree between supply and demand,and the constraints are capacities and resources,and the model is converted to a variational inequality form.A case study on a logistics nodes allocation plan was presented.The result shows that the matching degree(0.999 7) by the projection algorithm is greater than that(0.947 6) by experience comparative method.It was proved that the proposed model has a unique solution.
作者 张锦 王坤
出处 《西南交通大学学报》 EI CSCD 北大核心 2011年第3期481-487,共7页 Journal of Southwest Jiaotong University
基金 四川省社会科学基金重点项目(SC09A002) 中央高校基本科研业务费科技创新项目(SWJTU09ZT20)
关键词 物流 流线网络 匹配度 优化 变分不等式 投影算法 logistics stream line network matching degree optimization variational inequality projection algorithm
  • 相关文献

参考文献13

  • 1张锦,王坤.以物流供需匹配度为目标的流线优化模型[J].西南交通大学学报,2010,45(2):324-330. 被引量:26
  • 2AV|EZRI S F, EDWARD R S. A deletions game on hypergraph[J]. Discrete Applied Mathematics, 1991, 30(2) : 155-162.
  • 3ENDRE B. On shift stable hypergraphs[J]. Discrete Mathematics, 1991, 87(1): 81-84.
  • 4黄汝激.超网络的有向k超树分析法[J].电子科学学刊,1987,9(3):244-255.
  • 5郝忠孝,郭景峰.一种基于超图的最小覆盖集求法[J].计算机研究与发展,1990,27(10):58-64. 被引量:5
  • 6HAMMOND D, BEULLENS P. Closed-loop supply chain network equilibrium under legislation[ J ]. European Journal of Operational Research, 2007, 183(2) : 895-908.
  • 7NAGURNEY A, DONG J, ZHANG D. A supply chain network equilibrium model [ J ]. Transportation Research Part E: Logistics and Transportation Review, 2002, 38(5) : 281-303.
  • 8NAGURNEY A, MATSYPUR D A. Global supply chain network dynamics with multicriteria decision making under risk and uncertainty[ J]. Transportation Research Part E: Logistics and Transportation Review, 2005, 41(5) : 585-612.
  • 9WANG Zhiping, ZHANG Fumei, WANG Zhongtuo. Research of return supply chain supemetwork model based on variational inequalities[ C]///Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: Inst. of Elec. and Elec. Eng. Computer Society, 2007: 25-30.
  • 10赵晖,高自友.变分不等式的混沌搜索算法[J].北京交通大学学报,2006,30(6):85-88. 被引量:2

二级参考文献39

  • 1刘小群,马士华.供应链物流能力:流通量和响应时间测算模型[J].华中科技大学学报(自然科学版),2006,34(9):121-124. 被引量:13
  • 2孙敏,徐健腾,时贞军.一种新的投影型变分不等式交替方向方法[J].工程数学学报,2006,23(6):1101-1104. 被引量:3
  • 3马士华,赵婷婷.基于供应链节点和线路的物流能力核算方法研究[J].工业工程,2007,10(2):8-12. 被引量:6
  • 4VERMA R U. Projection Methods, Algorithms and a New System of Nonlinear Variational Inequalities [ J ]. compu & Math with Appl. 2001.41,1025 - 1031.
  • 5NIE H, LIU Z, KIM K H, et al. A System of Nonlinear Variational Inequalities Involving Strongly Monotone and Paeudocontractive Mappings[J]. Adv Nonlinear var Inequal, 2003,6(2) :91 -99.
  • 6VERMA R U. General Convergence Analysis for Two - step Projection Methods and Application to Variational Problems [ J ]. Appl Math Letters, 2005 (5) : 1 - 7.
  • 7CHANG S S. The Theorem and Application of Variational Inequalities and Complementarity Problems[ M]. Shanghai: Shanghai Sci Tec Liter Publishing House, 1991.
  • 8LIU L S. Ishikawa and Mann Iterative Process with Error for Nonlinear Strongly Accretive Mappings in Banach Spaces [ J ]. J Math Anal Appl, 1995:114- 125.
  • 9MARCOTYE P, WU J H. On the Convergence of Projection Methods[J]. Optim Theory Appl, 1995,85:347 -362.
  • 10VERMA R U. A Class of Quasivariational Inequalities Involving Cocoercive Mappings[J]. Adv Nordiner Var Inequal, 1999,2 (2) :1 - 12.

共引文献36

同被引文献30

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部