期刊文献+

单参数平均、对数平均和指数平均之间的一个精确的双向不等式(英文)

A Sharp Double Inequality Between the One-Parameter,Logarithmic and Identric Means
下载PDF
导出
摘要 利用初等微分学比较了单参数平均与对数和指数平均的几何组合,发现了使得双向不等式Jp(a,b)<Iα(a,b)L1-α(a,b)<Jq(a,b)对α∈(0,(17^(1/2)-3)/2]和所有a,b>0且a≠b成立的p的最大值和q的最小值,其中Jp(a,b),L(a,b)和I(a,b)分别表示a与b的p-次单参数平均、对数平均和指数平均. We compare the one-parameter mean with the geometric combination of logarithmic and identric means by use of the elementary differential calculus,and find the greatest value p=p(α) and the smallest value q=q(α) such that the double inequality Jp(a,b)〈 Iα(a,b)L1-α(a,b)〈 Jq(a,b) holds for α∈(0,(17-(1/2)-3)/2] and all a,b〉0 with a≠b,where Jp(a,b),L(a,b) and I(a,b) denote the p-th one-parameter,logarithmic,and identric means of a and b,respectively.
出处 《湖州师范学院学报》 2011年第1期1-6,共6页 Journal of Huzhou University
基金 This researchis supported by the Natural Science Foundation of China(11071069) the Innovation Team Foundation of the Depart ment of Education of Zhejiang Porvince(T200924)
关键词 单参数平均 对数平均 指数平均 one-parameter mean logarithmic mean identric mean
  • 相关文献

参考文献26

  • 1ALZER H.On Stolarsky's mean value family[J].Infernat J Math Ed Sci Tech,1987,20(1):186-189.
  • 2ALZER H.Uber eine einparametrige Familie Von Mittelwerten[J].Bayer Akad Wiss Math Natur Kl Sitzungsber,1988,1987:1-9.
  • 3ALZER H.Uber eine einparametrige Familie Von Mittelwerten II[J].Bayer Akad Wiss Math Natur Kl Sitzungsber,1989,1988:23-29.
  • 4QI F.The extended mean values:definition,properties,monotonicities,comarison,convexities,generalization,and applications[J].Cubo Math Educ,2003,5(3):63-90.
  • 5QI F,CERONE P,DRAGOM1R S S,et al.Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values[J].Appl Math Comput,2009,208(1):129-133.
  • 6CHEUNG W S,QI F.Logarithmic convexity of the one-parameter mean values[J].Taiwan Residents J Math,2007,11(1):231-237.
  • 7SHI M Y,CHU Y M,JIANG Y P.Optimal inequalities among varous means of two arguments[J].Abstr Appl Anal,2009,2009:1-10.
  • 8SHI M Y,CHU Y M,JIANG Y P.Three best inequalities for means[J].Int Math Forum,2010,5(22):1059-1066.
  • 9WANG M K,CHU Y M,QIU Y F.Some comparison inequalities for generalized Muirhead and identric means[J].J Inequal Appl,2010,2010:1-10.
  • 10XIA W F,CHU Y M,WANG G D.The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means[J].Abstr Appl Anal,2010,2010:1-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部