摘要
利用初等微分学比较了单参数平均与对数和指数平均的几何组合,发现了使得双向不等式Jp(a,b)<Iα(a,b)L1-α(a,b)<Jq(a,b)对α∈(0,(17^(1/2)-3)/2]和所有a,b>0且a≠b成立的p的最大值和q的最小值,其中Jp(a,b),L(a,b)和I(a,b)分别表示a与b的p-次单参数平均、对数平均和指数平均.
We compare the one-parameter mean with the geometric combination of logarithmic and identric means by use of the elementary differential calculus,and find the greatest value p=p(α) and the smallest value q=q(α) such that the double inequality Jp(a,b)〈 Iα(a,b)L1-α(a,b)〈 Jq(a,b) holds for α∈(0,(17-(1/2)-3)/2] and all a,b〉0 with a≠b,where Jp(a,b),L(a,b) and I(a,b) denote the p-th one-parameter,logarithmic,and identric means of a and b,respectively.
出处
《湖州师范学院学报》
2011年第1期1-6,共6页
Journal of Huzhou University
基金
This researchis supported by the Natural Science Foundation of China(11071069)
the Innovation Team Foundation of the Depart ment of Education of Zhejiang Porvince(T200924)
关键词
单参数平均
对数平均
指数平均
one-parameter mean
logarithmic mean
identric mean