期刊文献+

Golden Ratio-Based and Tapered Diptera Inspired Wings: Their Design and Fabrication Using Standard MEMS Technology 被引量:1

Golden Ratio-Based and Tapered Diptera Inspired Wings: Their Design and Fabrication Using Standard MEMS Technology
下载PDF
导出
摘要 This work presents our understanding of insect wings, and the design and micromachining of artificial wings with golden ratio-based and tapered veins. The geometric anisotwpy of Leading Edge Veins (LEVs) selected by Diptera has a function able to evade impact. As a Diptera example, the elliptic hollow-LEVs of cranefly wings are mechanically and aerodynamically significant. In this paper, an artificial wing was designed to be a fractal structure by mimicking cranefly wings and incorporating cross-veins and discal cell. Standard technologies of Microelectromechanical Systems (MEMS) were employed to materialize the design using the selected material. One SU-8 wing sample, light and stiffenough to be comparable to fresh cranefly wings, was presented. The as-prepared SU-8 wings are faithful to real wings not only in weight and vein pattern, but also in flexural stiffness and mass distribution. Thus our method renders possible mimickine with good lidelity of natural wings with complex geometry and morphology. This work presents our understanding of insect wings, and the design and micromachining of artificial wings with golden ratio-based and tapered veins. The geometric anisotwpy of Leading Edge Veins (LEVs) selected by Diptera has a function able to evade impact. As a Diptera example, the elliptic hollow-LEVs of cranefly wings are mechanically and aerodynamically significant. In this paper, an artificial wing was designed to be a fractal structure by mimicking cranefly wings and incorporating cross-veins and discal cell. Standard technologies of Microelectromechanical Systems (MEMS) were employed to materialize the design using the selected material. One SU-8 wing sample, light and stiffenough to be comparable to fresh cranefly wings, was presented. The as-prepared SU-8 wings are faithful to real wings not only in weight and vein pattern, but also in flexural stiffness and mass distribution. Thus our method renders possible mimickine with good lidelity of natural wings with complex geometry and morphology.
作者 X. Q. Bao
机构地区 IEMN UVHC SIMIT
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期174-180,共7页 仿生工程学报(英文版)
关键词 insect inspired wing SU-8 MEMS flcxural stiffness DIPTERA insect inspired wing, SU-8, MEMS, flcxural stiffness, Diptera
  • 相关文献

参考文献1

二级参考文献1

共引文献19

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部