期刊文献+

基于粗糙集理论在公安工作中的研究 被引量:1

Based on the Rough Set of Association Rules Mining in the Application of Public Security Information
下载PDF
导出
摘要 文章将基于粗糙集理论的数据挖掘算法引入公安情报工作,论述了基于粗糙集的关联规则挖掘在刑事案件中的应用实例,证明该算法在公安情报分析工作中的可行性,为公安情报工作提供新的解决方法,对于提高情报分析预测的效率、准确性,以及警力分配具有重要辅助作用。 This article introduces data mining algorithm based on rough sets theory,and discusses the public security intelligence work based on rough set of association rules mining in the criminal cases of application examples .Proof that this algorithm in public security intelligence analysis work is feasible and provide a new solution for it. It plays an important supplementary role for improving the efficiency of intelligence and the analysis prediction accuracy and the police distribution.
作者 刘秀如
出处 《信息网络安全》 2011年第6期77-79,共3页 Netinfo Security
关键词 数据挖掘 粗糙集 关联规则 公安情报 data mining rough set association rules public security intelligence
  • 相关文献

参考文献4

二级参考文献15

  • 1王旭仁,许榕生.基于粗糙集理论的关联规则挖掘研究及应用[J].计算机工程,2005,31(20):90-92. 被引量:10
  • 2童舟,罗可.基于Rough Set带结论域的关联规则挖掘[J].计算机工程与应用,2006,42(25):166-169. 被引量:4
  • 3王国胤.Rough集理论与知识获取[M].西安交通大学出版社,2003,3..
  • 4Results of the KDD'99 Classifier Learning Contest.《http://www.cs.ucsd.edu/users/elkan/clresults.html》, 1999
  • 5Borgelt C, Kruse R.Induction of Association Rules: Apriori Implementation.In: 15th Conference on Computational Statistics (Compstat 2002), Heidelberg, Germany, Physica Verlag, 2002
  • 6Agrawal R, Imielinski T, Swami A.Mining Associations Between Sets of Items in Massive Databases.In: Proc.of the 1993 ACM-SIGMOD Int'l Conf.on Management of Data, 1993:207-216
  • 7Agrawal R, Shafer J.Parallel Mining of Association Rules.IEEE Transaction on Knowledge and Data Engineering,1996, 8(6)
  • 8Agrawal R, Srikant R.Fast Algorithms for Mining Association Rules in Large Database.In: Proceedings of 20th International Conference on Very large Data Bases ,1994-09:478-499
  • 9Srikant R, Agrawal R.Mining Generalized Association Rules.In: Proceedings of 20th International Conference on Very large Data Bases, 1995-09:407-419
  • 10Bayardo R J, Agrawal R.Mining the Most Interesting Rules.In: Proc.of the Fifth ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining, 1999: 145-154

共引文献55

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部