期刊文献+

Bell多项式矩阵与两类下三角函数矩阵的关系及其应用

The Relation of the Matrices Related to the Bell Polynomials and Two Styles of Lower Triangular Functional Matrices and Its Applications
下载PDF
导出
摘要 应用下三角矩阵分解的统一方法与变量换元得到了Bell多项式矩阵与两类下三角函数矩阵的关系。通过研究其性质及其应用得到了一系列的重要的组合恒等式。 The main purpose is to derive the relation of the matrices related to the Bell polynomials and two styles of lower triangular functional matrices through unified approaches to the factorizations of many lower triangular matrices and the transformation of the variable.Moreover;some combinatorial identities are also derived from the corresponding matrix representations.
作者 辛兰萍
机构地区 中国海洋大学
出处 《科学技术与工程》 2011年第17期4039-4041,共3页 Science Technology and Engineering
基金 国家自然科学基金项目(10771199)资助
关键词 矩阵 BELL多项式 Pascal函数矩阵 组合恒等式 matrices bell polynomials Pascal functional matrices combinatorial identities
  • 相关文献

参考文献9

  • 1Wang W, Wang T. Matrices related to the Bell polynomials. Linear Algebra Appl,2007 ;422 : 139-154.
  • 2Maltais P, Gulliver T A. Pascal matrices and stirling numbers. Appl Math Lett, 1998 ;11 (2) :7-11.
  • 3Cheon G S, Kim J S, Stirling matrix via Pascal matrix, Linear Algebra App1,2001 ;329:49-59.
  • 4Comtet L, Advanced combinatorics, Dordrecht, D. Reidel Publishing Co. ,1974.
  • 5Abbas M,Bouroubi S. On new identities for Bell' s polynomials, Discrete Math ,2005 ;293 ( 1-3 ) :5-10.
  • 6Yang Yongzhi. Generalized Pascal matrix and its applications. Linear Algebra Appl,2007 ;423:230-245.
  • 7谭明术,王天明.具有二项式型多项式下三角矩阵的性质[J].Journal of Mathematical Research and Exposition,2005,25(1):183-190. 被引量:7
  • 8Call G S, Velleman D J. Pascal' s matrices, Amer. Math. Monthly, 1993 ; 100:372-376.
  • 9Zhang Z, Liu M. An extension of the generalized Pascal functional matrix and its algebraic properties. Linear Algebra Appl, 1998 ;271: 169-177.

二级参考文献12

  • 1CHEON Gi-sang, KIM Jin-soo. Stirling matrix via Pascal matrix [J]. Linear Algebra Appl., 2001, 329: 49-59.
  • 2BAYAT M, TEIMOORI H. The linear algebra of the generalized Pascal functional matrix [J]. Linear Algebra Appl., 1999, 295: 81-89.
  • 3COMET L. Advanced Combinatorics [M]. Boston: D.Reidel Pub. Co., 1974.
  • 4BRAWER R, PIROVINO M. The linear algebra of the Pascal matrix [J]. Linear Algebra Appl., 1992, 174:13-23.
  • 5CALL G S, VELLEMAN D J. Pascal's matrices [J]. Amer. Math. Monthly, 1993, 100: 372-376.
  • 6ZHANG Zhi-zheng, LIU Mai-xue. An extension of the generalized Pascal matrix and its algebraic properties [J]. Linear Algebra Appl., 1998, 271: 169-177.
  • 7ZHAO Xi-qiang, WANG Tian-ming. The algebraic properties of the generalized Pascal functional matrices associated with the exponential families [J]. Linear Algebra Appl., 2000, 318: 45-52.
  • 8GOULD H W. Combinatorial Identities [M]. Morgantown, West Virginia, 1972.
  • 9LOEB D E, ROTA G C. Formal power series of logarithmic type [J]. Adv. Math., 1989, 75: 1-118.
  • 10WILF H S. Generating functionology. Second edition [M]. San Diego: Academic Press, 1994.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部