期刊文献+

基于参考度的有效关联规则挖掘 被引量:2

Mining Efficient Association Rules Based on Consult
下载PDF
导出
摘要 针对当前关联规则挖掘采用的支持度-置信度框架在具体应用中存在的问题,引入新的指标——参考度对模型中关联规则挖掘算法评价体系进行改进。实验表明,通过引入参考度,能够提高挖掘有效规则的效率。 People find that generated association rules may be false or redundant when using the traditional evaluating indicator.The article introduces the new measure-consult to improve measure system of mining algorithm.The experiments show that the efficiency of valid rules can be enhanced by adding the new measure.
出处 《火力与指挥控制》 CSCD 北大核心 2011年第5期79-81,共3页 Fire Control & Command Control
基金 湖北省自然科学基金资助项目(2006ABA009)
关键词 数据挖掘 关联规则 入侵检测 参考度 data mining association rules intrusion detection measure-consult
  • 相关文献

参考文献7

  • 1Lee W. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems [D]. New York Columbia University, 1999.
  • 2Agrawal R, Imielinske T, Swami A. Mining Association Rules Between Sets of Items in Large Databases [C]//Proc. of the ACM SIGMOD International Conference on the Management of Data. Washington D.C, 1993, 5: 207-216.
  • 3Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[R]. Reaeareh Re-port RJ9893, IBM Almaden Research Center, San Jose, California, 1994.
  • 4伊卫国,卫金茂,王名扬.挖掘有效的关联规则[J].计算机工程与科学,2005,27(7):91-94. 被引量:9
  • 5吴良杰,刘红祥,况振东.基于确信因子的有效关联规则挖掘[J].计算机工程与应用,2004,40(32):187-189. 被引量:1
  • 6罗可,郗东妹.采掘有效的关联规则[J].小型微型计算机系统,2005,26(8):1374-1379. 被引量:12
  • 7KDD Cup 1999 Data[EB/OL]. http://kdd. ics. uci. edu/databases/kddcup 99/kddcup99. html.

二级参考文献23

  • 1Agrawal R et al. Mining association rules between sets of items in large databases[C]. In: Proceedings of ACM SIGMOD Conference on Management of Data, Washington DC. 1993, 207-216.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In: Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile, 1994, 487-499.
  • 3Agrawal R et al. Fast discovery of association rules[M]. In:Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,Menlo Park, California ,1996, 307-328.
  • 4Brin S. Motwani R, Silverstein C. Beyond market basket: Generalizing association rules to correlations[C]. In: Proc. 1997ACM-SIC-MOD Int. Conf. Management of Data, Tucson, AZ,1997, 265-276.
  • 5Srikant R, Agrawal R. Mining generalized association rules[C]. In: Proceedings of the 21th International Conference on Very Large Data Bases, Zurich, Switzerland ,September 1995.407-419.
  • 6Srikant I~., Agrawal R. Mining quantitative association rules[C]. In: Proceedings of the ACM SIGMOD. Montreal,Canada,1996,1-12.
  • 7Savasere A, Omiecinski E, Navathe S. Mining for strong negative association in a large database of customer transactions[C].In: Proceedings of the International Conference on Data Engineering. Orlando, Florida. 1998. 494-502.
  • 8Ahmed K M, E1-Makky N M, Taha Y. A note on “Beyond market basket: Generalizing association rules to correlations[C]. ” SIGKDD Explorations 1,2000,46-48.
  • 9R Agrawal, T Imielinski, A Swami.Mining Association Rules Between Sets of Items in Large Databases [A].Proc 1993 ACM SIGMOD Conf on Management of Data[C].1993.207-216.
  • 10http://www.ics.uci.edu/~mlearn/MLSummary.html,2003-05.

共引文献19

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部