期刊文献+

基于MHD的反舰导弹预定目标选择方法 被引量:6

A Destined Target Selection Method for Anti-ship Missile Based on Mean Hausdorff Distance
下载PDF
导出
摘要 如何对编队预定目标进行自动选择,是超视反舰导弹亟待解决的一个问题。提出用基于Hausdorff距离的形状匹配理论来解决编队预定目标选择问题。平均Hausdorff距离(MHD)能够较好地比较两个点集所构成形状的相似程度。通过寻找刚体变换下的最小MHD来搜索最佳匹配位置,最后用双向最近邻准则获得对应点。仿真实验表明了算法的有效性。 It's in dire need of a method to select the destined target from a ship formation for over-horizon Anti-ship Missiles.This problem is studied by making use of shape matching based on Haudsorff distance.Mean Hausdorff Distance(MHD) is an efficient measure of the similarity of two point sets.The minimum MHD under rigid transform is computed to locate the best maching position.and then the correspondences are acquired by bidirectional nearest neighbour rule.Finally simulational experiments show the effciency of the method.
出处 《火力与指挥控制》 CSCD 北大核心 2011年第5期114-117,共4页 Fire Control & Command Control
关键词 HAUSDORFF距离 形状匹配 反舰导弹 舰艇编队 目标选择 hausdorff distance shape matching anti-ship missile ship formation target selection
  • 相关文献

参考文献13

  • 1Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images using the Hausdorff Distance [J]. IEEE Trans on Pattern Analysis and Machine, 1993,15(9) : 850-863.
  • 2Dubuisson M P,Jain A K. A Modified Hausdorff Distance for Object Matching[C]//Proceedings of IEEE International Conference on Pattern Recognition(IAPR'12), 1994 : 566-568.
  • 3Wei Y F, Jiang D L, Peng S L. Locating Object using Hierarchicl Hausdorff Distance Matching [C]//Proceedings of IEEE International Conference on Signal Processing,2006 : 1-4.
  • 4Xu J B, Dou Y. Robust and Real-time Automatic Target Recognition using Partial Hausdorff Distance Measure on Reconfigurable Hardware [C]//Proceedings of IEEE International Conference on Field Programmable Technology,2006: 25-32.
  • 5Bustos J P,Donoso F,Guesalaga A,et al. Matching Radar and Satellite Images for Ship Trajectory Estimation using the Hausdorff Distance[J]. IEEE Trans on Radar Sonar Navig,2007,1(1): 50-58.
  • 6Mao H,Yu Q,Zhang T. Matching SAR Image to Optical Image using Modified Hausdorff Distance and Genetic Algorithms [C]// Proceedings of International Conference on Pattern Recognition and Computer Vision. Wuhan. China : SPIE, 2007, 6788: 678-820.
  • 7Hu Y, Yang Y. Automatic Target Recognition of ISAR Images based on Hausdorff Distance [C]// Proceedings of 1st Asian and Pacific Conference on Synthetic Aperture Radar,2007: 477-479.
  • 8Lu L,Hong Z,Ning Y. Enforcing Control Points of Correspondence by the Hausdorff Distance [C]// International Conference on Information and Automation, 2008: 1778-1782.
  • 9孙卫东,刘鼎臣,旷志高.反舰导弹选择能力研究[J].火力与指挥控制,2004,29(z1):65-67. 被引量:9
  • 10Park H R. Whang I H. An Effective Target Selection Algorithm for ASM (Anti-ship Missile) [C]//Proeeedings of SICE-ICASE International Joint Conference. Bexco. Busan. Korea, 2006 2930-2934.

二级参考文献6

共引文献23

同被引文献39

  • 1田晓东,刘忠.基于形状相似度的水下目标识别算法[J].声学技术,2007,26(3):493-497. 被引量:5
  • 2Besl P J,Mckay N D. A Method for Registration of 3-d Shapes[J]. IEEE Trans. Pattern Anal. Math. Intell,1992, 14(2): 239-256.
  • 3Cord O N, Damas S. Image Registration with Iterated Local Search[J]. Journal of Heuristics, 2006, 12(1-2). 73-94.
  • 4Boukebbab S, Bouchenitfa H, Boughouas H, et al. Applied Iterative Closest Point Algorithm to Automated Inspection of Gear Box Tooth [J]. Comput. Ind. Eng,2007, 52(1): 162-173.
  • 5Phillips J. Point Set Pattern Matching using the Procrustean Metric[C]//Mathematical Methods in Medical Imaging III,1994.
  • 6Fitzgibbon A W. Robust Registration of 2d and 3d Point Sets[J]. Image and Vision Computing,2003, 21(13-14) : 1145-1153.
  • 7Horn B K P. Closed-form Solution of Absolute Orientation using Unit Quaternions[J]. Journal of the Optical Society of America, 1987, 4 (4):629- 642.
  • 8Fitzgibbon A W. Robust Registration of 2D and 3D Point Sets [J ].Image and Vision Computing. 2003, 21( 13): 1145-1153.
  • 9Luck J P, Holt W A, Underwood R G, et al. Registration of Range Data Using a Hybrid Simulated Annealing and herative Closest Point Algorithm[C ]//IEEE Internationl Conference on Robotics and Automation, 2000.
  • 10Penney G, Edwards P, King A, et al. A Stochastic Iterative Closest Point Algorithm (stoehast ICP)[ C ]//forth Internation- al Conference on Medieal Image Computing and Comput- er-Assisted Intervention. 2001.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部