期刊文献+

带有未知死区的机器人积分变结构模糊控制 被引量:5

Integral Variable Structure Fuzzy Control of Robot Manipulators with Unknown Dead-Zone
下载PDF
导出
摘要 针对一类带有未知死区和外来干扰的不确定机器人系统,基于变结构控制原理,采用简化的死区输入模型,利用具有线性可调参数的模糊系统的逼近能力,提出了一种积分变结构自适应模糊控制方案。该方案取消了要求逼近误差平方可积的条件,同时利用Young's不等式减少了模糊系统调节参数的数目,从而降低了实现的复杂性。最后,利用Lyapunov综合方法证明了闭环系统是半全局一致终结有界的,并通过适当选取设计参数,跟踪误差收敛到零的一个邻域内。仿真结果表明了该方案的有效性与实用性。 Based on the principle of variable structure control and by use of the simplified dead-zone model and the approximation capability of fuzzy systems with linear adjustable parameters which are used to approximate unknown plant function,a novel integral variable structure adaptive fuzzy control strategy is proposed for a class of uncertain robot manipulator with unknown dead-zones and external disturbances.The approach does not require the optimal approximation error to be square-integrable.Meanwhile,by utilizing Young's inequality,the number of adjustable parameters in the fuzzy systems and the complexity of realization are reduced.Finally,by using the Lyapunov method,the closed-loop control system is proved to be semi-globally uniformly ultimately bounded,with the tracking errors converging to a small neighborhood of zero by appropriately choosing design constants.Simulation results show that the proposed approach is feasible and practical.
出处 《电光与控制》 北大核心 2011年第6期31-36,共6页 Electronics Optics & Control
基金 国家自然科学基金资助项目(60874045)
关键词 模糊控制 自适应控制 死区 积分变结构 fuzzy control adaptive control dead-zone integral variable structure
  • 相关文献

参考文献18

  • 1YU T, DANIEL V D. Robust fuzzy control of mechanical systems [ J ]. IEEE Trans on Fuzzy Systems ,2003,11 (3) : 411-418.
  • 2GE S S, HANG C C, WOON L C. Adaptive neural network control of robot manipulators in task space [ J ]. IEEE Trans on Industrial Electronics, 1997,44(6) :746-752.
  • 3PUREWAR S, KARI N, JHA A N. Nero sliding mode control of robotic manipulators [ C ]//Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, 2004:595-600.
  • 4CHIOU K C, HUANG S J. An adaptive fuzzy controller for robot manipulators [ J ] Mechatronics, 2005,15 : 151-177.
  • 5HSU Y C, CHEN G, LI H X. A fuzzy adaptive variable structure controller with applications to robot manipulators [ J]. IEEE Trans on Systems, Man, and Cybernetics-Part B : Cybernetics,2001,31 (3) :331-340.
  • 6吴玉香,王灏,毛宗源.机器人间接自适应模糊控制器及其应用[J].控制理论与应用,2002,19(6):860-864. 被引量:6
  • 7张天平.间接自适应模糊控制器的设计与分析[J].自动化学报,2002,28(6):977-983. 被引量:23
  • 8张天平.基于一种修改的李亚普诺夫函数的自适应模糊滑模控制[J].自动化学报,2002,28(1):137-142. 被引量:14
  • 9张天平,梅建东,沈启坤.一类非线性系统的积分变结构模糊自适应跟踪控制[J].控制与决策,2005,20(6):669-673. 被引量:1
  • 10GUO Y Z, WOO P Y. An adaptive fuzzy sliding mode controller for robotic manipulator [ J ]. IEEE Trans on Systems, Man, and Cybernetics-Part A : Systems and Hu- mans ,2003,33 (2) :149-159.

二级参考文献25

  • 1ZHANG Tian-Ping,YI Yang.Adaptive Fuzzy Control for a Class of MIMO Nonlinear Systems with Unknown Dead-zones[J].自动化学报,2007,33(1):96-100. 被引量:14
  • 2张天平,冯纯伯.一类非线性系统的自适应模糊滑模控制[J].自动化学报,1997,23(3):361-369. 被引量:49
  • 3Spong M W, Vidyasagar. Robot Dynamics and Control [ M]. New York: John Wiley & Sons Inc., 2001
  • 4Novakovic B, Scap D, Novakovic D, An adaptive fuzzy logic con trol synthesis and applications in robotics [ A ]. 1999 IEEE Interna tional Conference on Systems, Man, and Cybemetics [C]. 1999,6, 150- 155
  • 5Abreu A, Correia ia L. A fuzzy behavior-based architecture for decision control in autonomous vehicles [ A]. IEEE International Symposium on Intelligent Control [ C]. 2001,370- 375
  • 6ChenLH, ChiangCH, YuanJ. New approachto adaptive control architecture based on fuzzy neural network and genetic algorithm[A].IEEE International Conference on Systems, Man, and Cyber netics [C]. 2001,1,347 - 352
  • 7Gao Y, Meng J E, Song Y. Adaptive control of robot manipulators using fuzzy neural networks [J]. IEEE Trans. on Industrial Electron ics, 2001, 48(6): 1274 - 1278
  • 8Wang H, Mao Z Y, Zhou Q J. MIMO indirect adaptive fuzzy con trol ( Ⅰ ) [ A ]. The Chinese Fifth Conference of Robotc [ C ]. Harbin, 1997,397-407 (in Chinese)
  • 9Wang H, Mao Z Y, Zhou Q J. MIMO indirect adaptive fuzzy con trol ( Ⅱ ) [ A ]. The Chinese Fifth Conference of Robotic [ C]. Harbin, 1997,397-407 (in Chinese)
  • 10Wang H, Mao Z Y. Robot Intelligent Control [M]. Beijing:Nation al Defence Industrial Publishing Company,2002(in Chinese)

共引文献52

同被引文献50

  • 1孙炜,王耀南.模糊B样条基神经网络及其在机器人轨迹跟踪中的应用[J].动力学与控制学报,2005,3(1):56-61. 被引量:5
  • 2ZHANG T P, GE S S. Adaptive surface control of nonli- near systems with unknown dead zone in pure feedback form [ J ]. Automatica, 2008, 44 (7) : 1895-1903.
  • 3ZHANG T P, ZHU Q, YANG Y Q. Adaptive neural control of non-affine pure-feedback non-linear systems with input nonlinearity and perturbed uncertainties [ J ]. International Journal of Systems Science, 2012, 43 ( 4 ) :691-706.
  • 4SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems [ J ]. IEEE Transactions on Automatic Control, 2000, 45 ( 10 ) : 1893- 1899.
  • 5WANG D, HUANG J. Neural network-based adaptive dy- namic surface control for a class of uncertain nonlinear systems in strict-feedback form[ J ]. IEEE Transactions on Neural Networks, 2005, 16 ( 1 ) :195-202.
  • 6WANG T, TONG S C. Adaptive fuzzy robust control for nonlinear system with dynamic uncertainties based on backstepping [ C ]//Innovative Computing Information and Control, the 3rd International Conference, Jinzhou, China, 2008 : 125-129.
  • 7JIANG Z P, LAURENT P. Design of robust adaptive con- trollers for nonlinear systems with dynamic uncertainty [ J ]. Automatica, 1998, 34 ( 7 ) : 825-840.
  • 8LIN W, QIAN C J. Adaptive control of nonlinearly pa-rameterized systems: a non-smooth feedback framework [ J]. IEEE Transactions on Automatic Control, 2002, 47 (5) :757-774.
  • 9LIN D, LIU H J, SONG H. Fuzzy neural control of uncer- tain chaotic systems with backlash nonlinearity [ J ]. Inter- national Journal of Machine Learning and Cybernetics, 2014,5(5) :721 -728.
  • 10TAO G, KOKOTOVIC P V. Adaptive sliding control of plants with unknown dead-zone [ J ]. IEEE Trans. Autom. Control, 1994,39 ( 1 ) :59 - 68.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部