期刊文献+

基于无迹变换的协方差交集算法研究

Research of Covariance Intersection Algorithm Based on Unscented Transformation
下载PDF
导出
摘要 针对分布式数据观测系统中数据融合存在数据线性化过程误差较大、滤波过程中的错误无法修正的问题,提出了一种基于无迹变换的协方差交集算法。该算法首先对系统数据进行无迹变换,然后对数据采用协方差交集算法滤波,可得到较好的滤波性能。实验结果表明,该算法弥补了协方差交集算法的不足,能够修正数据线性化误差及滤波产生的错误,是一种有效的数据融合算法。 In view of problems existed in data fusion of distributed data observation system, namely bigger error in data linearization process and uncorrecting error in filtering process, the paper proposed a eovariance intersection algorithm based on unscented transformation. The algorithm makes unscented transformation for system's data at first, then uses covariance intersection algorithm to filter data, which can gain better filtering performance. The experiment result showed that the algorithm makes up deficiencies of covariance intersection algorithm and can correct errors produced in processes of data linearization and filtering, which is an effective data fusion algorithm.
出处 《工矿自动化》 2011年第6期36-39,共4页 Journal Of Mine Automation
基金 甘肃省工业过程先进控制重点实验室项目(XJK0903)
关键词 数据融合 无迹变换 协方差交集算法 UCI算法 data fusion, unscented transformation, covariance intersection algorithm, UCI algorithm
  • 相关文献

参考文献8

二级参考文献29

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2杨峰,潘泉,梁彦,叶亮.多源信息空间配准中的UT变换采样策略研究[J].系统仿真学报,2006,18(3):713-717. 被引量:15
  • 3王博,徐德民.混合坐标系下基于U变换的水下机动目标被动跟踪[J].系统工程理论与实践,2007,27(3):145-149. 被引量:2
  • 4Horn R A and Johnson C R. Matrix Analysis[M]. Cambridge:Cambridge University Press, 1985.
  • 5Simon D J. Optimal State Estimation [ M ]. [ S. l ] :John Wiley & Sons, 2006.
  • 6S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators[ J]. IEEE Transactions on Automatic Control. 2000, 45 (3): 477-482.
  • 7S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation [ J ]. Proceedings of the IEEE. 2004, 92 ( 3 ) : 401-422.
  • 8Julier S. J. , Uhlmann J. K.. Unscented filtering and nonlinear estimation[ J]. Proceedings of the IEEE ,2004,92 ( 3 ) :401-422.
  • 9Merwe R. , Doucet A. , Freitas Nando de, Wan Eric. The un-scented particle filter [ R ]. Cambridge University, engineering department: Technical report, CUED/ F-INFENG/TR 380,2000.
  • 10Welch G. ,Bishop G.. An introduction to the kalman filer[ R].University of North Carolina at Chapel Hill: Technical Report, TR 95- 041,2004.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部