期刊文献+

毒素对阶段结构的单种群持续生存的影响 被引量:4

Effects on Survival of Stage-Structured Single Population with Toxicant
下载PDF
导出
摘要 基于传统的毒素模型和阶段结构种群模型提出了一个新的数学模型来描述污染环境中结构单种群的动力学.从毒素和种群密度依赖法则来考虑未成熟个体和成熟个体的死亡率,得到了结构种群持久存在和灭绝的阈值条件. Based on the traditional toxicant model and the structured population model,the authors propose a new mathematical model to describe the dynamics of a single population in the polluted environment.Considering the mortalities of immature and mature individuals from toxicant and the density-dependent regulations,the authors obtain the threshold conditions for the persistence and extinction of the structured population.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期54-59,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871162)
关键词 阶段结构 全局稳定性 李雅普诺夫函数 持久 毒素 stage-structure global stability Liapunov function persistence toxicant
  • 相关文献

参考文献10

  • 1HALLAM T G, CLARK C E, LASSITER R R. Effects of Toxicants on Populations: A Qualitative Approach I. Equi- librium Environmental Exposure [J].Ecol Model, 1983, 8(1): 291-304.
  • 2HALLAM T G, CLARKE C E, JORDAN G S. Effects of Toxicants on Populations: A Qualitative Approach II, First Order Kinetics [J]. J Math Biol, 1983, 18(2) : 25-37.
  • 3FREEDMAN H I, SHUKLA J B. Models for the Effect of Toxicant in Single Species and Predator-prey System [J]. J Math Biol, 1991, 30(1): 15-30.
  • 4SHUKLA J B,AGARWAL A K, DUBEY B, et al. Existence and Survival of Two Competing Species in a Polluted Envi- ronment: A Mathematical Model [J]. J Biol Systems, 2001, 9(2): 89-103.
  • 5THIEME H R. Convergence Results and a Poincare-Bendixson Trichotomy for Asymptotically Autonomous Differential Equations [J]. J MathBiol, 1992, 30(11): 755-763.
  • 6THIEME H R. Persistence Under Relaxed Point-Dissipativity (with Application to an Endemic Model) [J]. SIAM J Math Anal, 1993, 24(2) : 407-435.
  • 7XIAO Yan-ni, CHEN Lan-sun. Effects of Toxicants on a Stage-Structured Population Growth Model [J].Applied Mathematics and Computation, 2001, 123:63-73.
  • 8WANG Wen-di, CHEN Lan-sun. A Predator-Prey System with Stage-Structure for Predator [J]. Comput Math Appl, 1997, 33(8): 83-91.
  • 9王稳地.一个带时滞的离散模型的一致持续生存[J].西南师范大学学报(自然科学版),1992,17(1):13-18. 被引量:12
  • 10周锐,王稳地.染病食饵种群中疾病的持久性和灭绝性(英文)[J].西南大学学报(自然科学版),2007,29(4):15-20. 被引量:1

二级参考文献17

  • 1[2]Hadeler K P,Freedman H I.Predator-Prey Populations with Parasitic Infection[J].J Math Biol,1989,27:609 -631.
  • 2[3]Venturino E.The Influence of Diseases on Lotka-Volterra Systems[J].Rky Mt J Math,1994,24:381-402.
  • 3[4]Venturino E.Epidemics in Predator-Prey Models:Disease in the Prey[A].Mathematical Population Dynamics:Analysis of Heterogeneitiy[C].Winnipeg:Wuerz Publishing,1995.381-393.
  • 4[5]Chattopadhyay J,Arino O.A Predator-Prey Model with Disease in the Prey[J].Nonlinear Anal,1999,36:747-766.
  • 5[6]Chattopadhyay J,Arino O.Infection in Prey Population May act as a Biological Control in Ratio-Dependent PredatorPrey Models[J].Nonlinearity,2004,17:1101-1116.
  • 6[7]Xiao Yanni,Chen Lansun.Modeling and Analysis of a Predator-Prey Model with Disease in the Prey[J].Math Biosci,2001,171:59-82.
  • 7[8]Hethcote H W,Wang Wendi,Han Litao,Ma Zhien.A Predator-Prey Model with Infected Prey[J].J Theor Popu Biol,2004,66:259-268.
  • 8[9]P.van den Driessche,Watmough J.Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission[J].Math Biosci,2002,180:29 -48.
  • 9[10]Wang Wendi,Ma Zhien.Harmless Delays for Uniform Persistence[J].J Math Anal Appl,1991,158:256-268.
  • 10[11]陈兰荪,宋新宇,陆征-.数学生态学模型与研究方法[M].成都:四川科学出版社,2002.

共引文献11

同被引文献27

  • 1Yong-guang Yu,Suo-chun Zhang,Da-li Yang.The Analysis of Model on Population Growth with Stage-structure in the Polluted Environment[J].Acta Mathematicae Applicatae Sinica,2006,22(2):265-272. 被引量:1
  • 2马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1994.41-45.
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2003.
  • 4HALLAM T G, CLARK C E, LASSIDER R R. Effects of toxicants on populations: a qualitative: approach I. equilibrium environmental exposure [J]. Ecological Modelling, 1983,8 (1) : 291-304.
  • 5HALLAM T G, CLARK C E, JORDAN G S. Effects of toxicants on populations:a qualitative: approach II. first or- der kinetics [J]. J Math Bio1,1983,18(2):9-16.
  • 6HALLAM T G, DELUNA J T. Effects of toxicants on populations: a qualitative: approach III. environmen-tal and food chain pathways [J]. Journal of Theoreti- cal Biology, 1984,109(3) :411-429.
  • 7WANG Wendi, CHEN Lansun. A. predator-prey sys- tem with stage-structure for predator [J]. Comput Math Appl, 1997,33 (8) : 83-91.
  • 8HUANG Xuming, KONG Xiangzeng, YANG Wensh- eng. Permanence of periodic predator-prey system with general nonlinear functional response and stage struc- ture for both predator and prey [J]. Abstract and Ap- plied Analysis, 2009 : 855-869.
  • 9WANG Fengyan, PANG Guoping. The global stabili- ty of a delayed predator-prey system with two stage- structure[J]. Chaos, Solitons and Fractals, 2009, 40 (2) :778-785.
  • 10MA Zhihui, LI Zizhen, WANG Shufan, et al. Perma- nence of a predator-prey system with stage structure and time delay [J]. Appl Math Comput,2008,201 (1/ 2) :65-71.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部