期刊文献+

一种新的广义梯形模糊数相似性度量方法及在故障诊断中的应用 被引量:22

A New Similarity Measure Between Generalized Trapezoidal Fuzzy Numbers and Its Application to Fault Diagnosis
下载PDF
导出
摘要 当前,研究模糊数(Fuzzy number,FN)或广义模糊数(Generalized fuzzy number,GFN)之间的相似性度量方法,大多用于度量论域在单位区间上的标准模糊数.然而在实际中,非标准模糊数却十分常见,而利用现有的多数方法则须先将其转化为标准模糊数再加以处理.但是,归一化的过程会因引起信息损失致使相似性度量结果不合理.本文提出一种避免归一化过程的广义梯形模糊数(generalized trapezoidal fuzzy numbers,GTFN)相似性度量方法,避免了归一化过程.新的方法结合了广义梯形模糊数的指数距离、周长和面积等因素来计算相似度.同时分析了新度量公式的一些性质.然后,利用12对典型的GFN与现有的主要方法进行比较.结果验证新方法的效能.最后,将所提相似性测度方法应用于基于Dempster-Shafer(DS)证据理论的故障诊断当中,通过实际采集数据来验证本文所提方法的有效性. At present,some methods have been presented to calculate the degree of similarity between(Fuzzy numbers,FNs) or(Generalized fuzzy numbers,GFNs) Most of them are designed for standardized fuzzy numbers,i.e.,the universe of the discourse of FNs lie in unit interval.In order to deal with the non-standardized fuzzy numbers common in practice,it is necessary to transform it into standardized fuzzy numbers,such that the degree of similarity can be calculated.However,normalization process tends to cause information loss and unreasonable results of similarity measure.This paper presents a new similarity measure between GTFNs avoiding normalization process.The new method combines the concepts of exponential distance,the perimeter and the area of GTFNs for calculating the degree of similarity.Some properties of the proposed similarity measure are also proved.And then 12 typical sets of GFNs are given to compare the proposed method with most of the existing methods.The results show that the new method is more efficient to a certain extent.Finally,a practical example is given to show that the proposed method can provide a useful way to deal with the problem of D-S evidence theory based machinery fault diagnosis.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第A03期1-6,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61004070 60934009 60874105 61034006) 浙江省自然科学基金(No.Y1080422) 中国博士后科学基金(No.20100470353) 清华信息科学与技术国家实验室(筹)资助
关键词 广义模糊数 相似性度量 故障诊断 DS证据理论 generalized fuzzy number similarity measure fault diagnosis DS evidence theory
  • 相关文献

参考文献12

  • 1Chen S. New methods for subjective mental workload assessment and fuzzy risk analysis [ J ]. Cybernetics and Systems, 1996,27(5) :449 - 472.
  • 2Chen S-J, Chen S-M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2003,11 (1) .45 - 56.
  • 3H S Lee. An optimal aggregation method for fuzzy opinions of group decision[ A]. IEEE lnt Conf on SMC, vol. 3[C]. Tokyo, Japan, 1999.314 - 319.
  • 4Wei S-H, Chen S-M. A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[ J] . Expert Systems with Applications, 2009,36(1) : 581 - 588.
  • 5Chen S-H. Ranking generalized fuzzy number with graded mean integration[ A]. proc of the eighth int fuzzy systems association world congress, vol. 2[ c ]. Taipei, Taiwan, Republic of China, 1999. 899 - 902.
  • 6Parikh C, Pont M, Barrie Jones N. Application of Dempstersharer theory in condition monitoring applications: a case study [ J ]. Pattern Recognition Letters, 2001,22 (6 - 7) : 777 - 785.
  • 7Rogova G. Combining the results of several neural network classifiers [ J]. Neural networks, 1994,7 (5) : 777 - 781.
  • 8Fan X, Zuo M. Fault diagnosis of machines based on DS evidence theory. Part 2: Appfication of the improved DS evidence theory in gearbox fault diagnosis[ J ]. Pattern Recognition Letters, 2006,27 (5) : 377 - 385.
  • 9Jones R, Lowe A, Harrison M. A framework for intelligent medical diagnosis using the theory of evidence[J]. Knowledge-Based Systems,2002,15(1 - 2) :77 - 84.
  • 10徐晓滨,文成林,王迎昌.基于模糊故障特征信息的随机集度量信息融合诊断方法[J].电子与信息学报,2009,31(7):1635-1640. 被引量:27

二级参考文献10

共引文献154

同被引文献223

引证文献22

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部