期刊文献+

面向压缩感知的块稀疏度自适应迭代算法 被引量:15

Block Sparsity Adaptive Iteration Algorithm for Compressed Sensing
下载PDF
导出
摘要 块稀疏信号是一种典型的稀疏信号,目前在块稀疏信号的压缩感知问题中,大多数信号重构算法要求信号的块稀疏度已知且算法复杂度高.针对实际应用中信号块稀疏度未知的情况,提出了一种块稀疏度自适应迭代算法,用于信号重构.首先,该算法初始化一个块稀疏度,其值按设定步长进行增加.对每一个块稀疏度的迭代,算法都会找到信号支撑块的一个子集,并修正更新上一次找到的信号支撑块,最后找到信号的整个支撑块,从而重构出源信号.该算法不需要信号的块稀疏度作为先验知识,而且算法复杂度低.仿真实验表明,该算法的重构概率较已有大多数块稀疏信号重构算法的重构概率高,在块稀疏信号的压缩感知问题中具有实际意义. Block-sparse signal is a typical sparse signal.Among the block-sparse signal problems for compressed sensing,the most existing recovery algorithms require block sparsity as prior knowledge and have a high complexity.In this paper,a block sparsity adaptive iteration algorithm for compressed sensing has been proposed when the block sparsity is unknown.Firstly,the algorithm initializes a block sparsity which will increase by steps.Subsequently,for each block sparsity,a sub-set of the signal support set can be determined by the algorithm,which updates the previous one,until the exact support set is acquired,finally the original signal can be reconstructed through the exact support set.This algorithm doesn't require block sparsity as prior knowledge and has a low complexity.Simulation results demonstrate its high recovery probability than most existing algorithms,which makes it a promising for practical block-sparse signal compressed sensing task.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第A03期75-79,共5页 Acta Electronica Sinica
关键词 压缩感知 块稀疏 自适应 重构概率 compressed sensing block-sparse adaptive recovery probability
  • 相关文献

参考文献10

  • 1E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52(2) :489 - 509.
  • 2D L Donoho. Compressed sensing[J]. IEEE Trans on Information Theory.2006,52(4) : 1289 - 1306.
  • 3E Candes, Terence Tao. Decoding by linear programming[ J ]. IEEE Trans on Information Theory, 2005, 51 ( 12): 4203 - 4215.
  • 4J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory, 2007,53 (12) : 4655 - 4666.
  • 5W Dai, O Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE. Trans on Information Theory, 2009,55(5) :2230 - 2249.
  • 6T T Do,L Gan,N Nguyen, T D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. In Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, California, 2008. 581 - 587.
  • 7R G Baraniuk, V Cevher, M F Duarte,C Hegde. Model-based compressive sensing [ J ]. IEEE, Trans on Information Theory, 2010,56(4) :1982 - 2001.
  • 8Y C Eldar,M Mishali. Robust recovery of signals from a structured union of subspaces[ J]. IEEE Trans on Information Theory,2009,55 (11) :5302 - 5316.
  • 9Y C Eldar, P Kuppinger, H Bolcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Trans on Signal Processing, 2010, 58 (6) : 3042 -3054.
  • 10M Lobo, L Vandenberghe, S Boyd. Applications of second-order cone programming [J]. Linear Algebra and its Applications, 1998,284( 1 - 3) : 193 - 228.

同被引文献143

  • 1刘东华,梁光明.Turbo码设计与应用[M].北京:电子工业出版社.2011.
  • 2刘浩,吴季,等.综合孔径微波辐射计信道误差分析与标定[J].2005,33(3):402-406.
  • 3Kaipio J, Somesalo E. Statistical and Computational Inverse Problems [ M]. Berlin: Springer, 2004.
  • 4Camps A,Bara J,et al.Extension of the clean technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers [J]. Progress on Electrmagnetic Research, 1998,18: 67 - 83.
  • 5Lannes A, Anterrieu E, et al. Fourier interpolation and recon- struction via Shannon-type techniques--Part I: Regularization principle [ J]. JoulTlal of Modem Optics, 1994,41 (8) : 1537 - 1574.
  • 6Lannes A,Anterrieu E, et al. Fourier interpolation and recon- struction via Shannon-type techniques--Part I/: Technical de- velopments and applications [ J ]. Journal of Modem Optics, 1996,43(1) : 105 - 138.
  • 7Anterrieu E. A resolving maa-ix approach for synthetic aper- ture imaging radiometers [ J ]. lEvEE Transaction on Geo- science and Remote Sensing,2004,42(8):1649- 1656.
  • 8Picard B, Anterrieu E. Comparison of regularized inversion al- gorithm methods in synthetic aperture imaging radiomelry [ J ]. IEEE Transaction on Geoscience and Remote Sensing, 2005,43(2) : 1649 - 1656.
  • 9Xiong Z B, Hu F, et al. Statistical distribution of visibilities in digital aperture synthesis radiomelxy [ J ]. IEF, F, Geoscience and Remote Sensing Letters,2009,6(3) :428 - 432.
  • 10Butora R, Camps A, The maps in aperture synthesis radiomet- ric images due to cross-correlation of visibility noise[ J].Ra- dio Sci,2003,38(4) : 1067 - 1074.

引证文献15

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部