期刊文献+

基于频域滤波的噪声识别去噪算法 被引量:1

Diagnosis Algorithm of Noise Identification Based on Frequency Domain Filtering
下载PDF
导出
摘要 在频域滤波的基础上,对图像的高频部分进行噪声识别,区分边缘与噪声,进而通过改进的空间滤波算法实施去噪,使图像边缘细节部分得到保护,再将处理后的高频图像与其对应的低频图像进行融合,以获得完整的高质量图像。实验结果表明通过新算法处理后的图像可以达到较好的降噪效果。 On the base of frequency domain filtering,the new algorithm identified the noise in high-frequency portion of the image was set forth,distinguished edge and noise,thereby to reduce noise through the improved algorithm of spatial filtering,and to protect the edge of the image.The treated high-frequency image was fused with its corresponding low-frequency image,to obtain a complete and perfect image.Experimental results showed that the new algorithm can achieve the purpose of the image noise reduction.
出处 《船海工程》 2011年第2期146-148,共3页 Ship & Ocean Engineering
基金 国家自然科学基金(50977090)
关键词 频域滤波 噪声识别 均值滤波 去噪 空间滤波 frequency domain filtering noise identification mean filtering noise reduction spatial filtering
  • 相关文献

参考文献3

二级参考文献23

  • 1陈志强,徐丹,张丽,刘以农,高文焕,康克军.用于高能射线透视成像的大型图像对比度增强算法[J].中国体视学与图像分析,2003,8(2):65-68. 被引量:7
  • 2GONZALEZ R C,WOODS R E.数字图像处理[M].北京:高等教育出版社,2002:59-84.
  • 3Donoho D L. Denoising by soft-thresholding [ J]. IEEE Transactions on Information Theory, 1995, 41( 3 ) : 617-627.
  • 4Coifman R R, Donoho D L. Translation-invariant denoising [A]. In: A. Antoniadis and G. Oppenheim, Eds: Wavelets and Statistics, Lecture Notes [ C ] , New York, NY, USA: Springer-Verlag, 1995: 125-150.
  • 5Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [J]. IEEE Transacitons on Image Processing, 2000, 9(9) : 1522-1531.
  • 6Portilla J, Strela V, Wainwright M J, et al. Image denoising using Gaussian scale mixtures in the wavelet domain [J]. IEEE Transactions on Image processing, 2003, 12 (11) : 1338-1351.
  • 7Simoncelli E P, Adelson E. Noise removal via Bayesian wavelet coring [ A]. In: Proceedings of IEEE International Conference on Image Processing [C], Lausanne, Switzerland, 1996 : 379-382.
  • 8Crouse M S, Nowark R D, Baraniuk R G. Wavelet-based signal processing using hidden Markov modes [J]. IEEE Transactions on Signal Processing, 1998, 46(4) : 886-902.
  • 9Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscalee dependency [ J ]. IEEE Transactions on Signal Processing, 2002, 50( 11 ): 2744-2756.
  • 10Portilla J, Strela V, Wainwright M, et al. Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain [A]. In: Proceedings of 8th IEEE International Conference on Image Processing [ C ], Thessaloniki, Greece, 2001 : 37-40.

共引文献68

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部