摘要
通过引入新的附加矩阵对Lyapunov函数的差分进行处理,给出离散全状态饱和系统和离散部分状态饱和系统在原点大范围渐近稳定的充分条件,并将此条件与已有结论进行分析对比,证明了所得条件具有较小的保守性,最后利用数值算例验证了结论的有效性.
In this paper the stability of discrete linear systems with state saturation is studied.By constructing an additional matrix,the difference of Lyapunov functions can be dealt with and sufficient conditions are presented for extensively asymptotic stability at the origin of the discrete systems,which have saturation on all states and part of the states.By comparing with existing results,it is shown that the sufficient conditions have less conservative property.Finally,some numerical examples are presented to verify the effectiveness of our results.
出处
《哈尔滨师范大学自然科学学报》
CAS
2010年第5期20-23,共4页
Natural Science Journal of Harbin Normal University
关键词
离散系统
状态饱和
渐近稳定
Discrete linear systems
State saturation
Asymptotic stability