期刊文献+

带有不可忽略缺失数据的广义部分线性模型的贝叶斯分析 被引量:1

Bayesian Analysis for Generalized Partially Linear Models With Nonignorably Missing Data
原文传递
导出
摘要 广义部分线性模型是广义线性模型和部分线性模型的推广,是一种应用广泛的半参数模型.本文讨论的是该模型在线性协变量和响应变量均存在非随机缺失数据情形下参数的Bayes估计和基于Bayes因子的模型选择问题,在分析过程中,采用了惩罚样条来估计模型中的非参数成分,并建立了Bayes层次模型;为了解决Gibbs抽样过程中因参数高度相关带来的混合性差以及因维数增加导致出现不稳定性的问题,引入了潜变量做为添加数据并应用了压缩Gibbs抽样方法,改进了收敛性;同时,为了避免计算多重积分,利用了M-H算法估计边缘密度函数后计算Bayes因子,为模型的选择比较提供了一种准则.最后,通过模拟和实例验证了所给方法的有效性. As an extensive applied model, generalized partially linear model is an extension of generalized linear model and partially linear model. A method is proposed to obtain Bayesian estimation and to select appropriate model based on Bayes factor for such model with missing data both in covariate and response. Firstly, nonparametric components are fitted by penalized- splines and a Bayesian hierarchical model is set to model smooth parameters, then a vector of latent variable is introduced and the collapsed Gibbs sampler is implemented in order to improve the mixing and robustness of MCMC. Finally, simulation and real datasets are presented to illustrate the proposed methods.
出处 《数学进展》 CSCD 北大核心 2011年第3期299-313,共15页 Advances in Mathematics(China)
基金 国家社科基金(No.10BTJ001) 云南省自然科学基金(No.2010ZC059)
关键词 不可忽略缺失数据 广义部分线性模型 惩罚样条 压缩Gibbs抽样 M—H算法 nonignorable splines collapsed Gibbs sampler missing data generalized partially linear model penalized- M-H algorithm
  • 相关文献

参考文献27

  • 1Little, R.J.A., Rubin, D.B., Statistical Analysis With Missing Data(2nd ed.), New York: Wiley, 2002.
  • 2Ibrahim, J.G., Incomplete data in generalized linear models, Journal of the American Statistical Association, 1990, 85: 765-769.
  • 3Ibrahim, J.G., Chen M.H., Lipsitz, S.R., Monte Carlo EM for missing covariates in parametric regression models, Biometrics, 1999, 55: 591-596.
  • 4Ibrahim, J.G., Chen M.H., Lipsitz, S.R., Missing responses in generalised linear mixed models when the missing data mechanism is nonignorbale, Biometrika, 2001, 88: 551-564.
  • 5Huang L., Chen M.H., Ibrahim, J.G., Bayesian analysis for generalized linear models with nonignorable missing covariates, Biometrics, 2005, 61: 729-737.
  • 6Lee, S.Y., Song X.Y., Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data, Journal of Classification, 2004, 20: 221-225.
  • 7Lee, S.Y., Tang N.S., Bayesian analysis of structural equation models with mixed exponential family and ordered categorical data, British Journal of Mathematical and Statistical Psychology, 2006, 59: 151-172.
  • 8Lee, S.Y., Tang N.S., Bayesian analysis of nonlinear structural equation models with nonignorable missing data, Psychometrika, 2006, 71: 541-564.
  • 9Yang X.W., Li J.H., Shoptaw, S., Imputation-based strategies for clinical trial longitudinal data with nonig- norable missing values, Statistics in Medicine, 2008, 27: 2826-2849.
  • 10郑术蓉,史宁中,郭建华.含缺失数据线性模型的线性不等式约束EM算法[J].中国科学(A辑),2005,35(2):231-240. 被引量:12

二级参考文献15

  • 1Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm(with discussion). Journal of the Royal Statistical Society, Series B, 1977, 39:1-38.
  • 2Little R J A, Rubin D R. Statistical Analysis with Missing Data. New York: Wiley, 1987.
  • 3Wu C F J. On the convergence properties of the EM algorithm. The Annals of Statistics, 1983, 11: 95- 103.
  • 4Zangwill W I. Nonlinear Programming: A Unified Approach. Englewood Cliffs: Prentice Hall, 1969.
  • 5Boyles R A. On the convergence of the EM algorithm. Journal of the Royal Statistical Society, Series B,1983, 45:47-50.
  • 6Kim D K, Taylor J M G. The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters. Journal of the American Statistical Association, 1995, 430:708-716.
  • 7Dykstra R L, Robertson T, Silvapulle M J. Journal of Statistical Planning and Inference, 2002, 107(1-2).
  • 8Shi N Z, Zheng S R, Guo J H. The restricted EM algorithm under inequality restrictions on the parameters. Journal of Multivariate Analysis, 2005, 92:53-76.
  • 9Danfig G B, Eaves B C. Studies in Optimization. Washington: Mathematical Association of America,1974.
  • 10Liew C K. Inequality constrained least-squares estimation. Journal of the American Statistical Association, 1976, 71:746-751.

共引文献12

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部