期刊文献+

MEMS-SPMT用推进剂的热稳定性和能量特性研究 被引量:1

Study on Thermal Stability and Energy Characteristics of Propellant for MEMS-SPMT
下载PDF
导出
摘要 以斯蒂芬酸铅作为推进剂的主要组分,硝化棉为粘接剂,通过添加高氯酸铵、细铝粉,得到了可用于MEMS-SPMT的推进剂。采用DSC研究了高氯酸铵、铝粉、硝化棉对斯蒂芬酸铅热稳定性的影响,研究了4种推进剂配方的热解特性,并利用CEA软件进行热力计算,研究了2种喷管扩张比(面积比)下4种推进剂配方的能量特性。结果表明,高氯酸铵和铝对斯蒂芬酸铅的热稳定性无明显影响,硝化棉能降低斯蒂芬酸铅的热稳定性。硝化棉与高氯酸铵质量比大的推进剂热稳定性较低。增加硝化棉、高氯酸铵的质量含量和增大喷管扩张比均能提高推进剂比冲。 Propellants for MEMS-based solid microthruster should have low thermal stability. The propellant for MEMS-SPMT is a propellant compond of four ingredients, lead styphnate as the main ingredient, nitrocellulose as the binder, ammonium perchlorate and superfine aluminium powder as additives. The effects of ammonium perchlorate, aluminium powder and nitrocellulose on the thermal stability of lead styphnate and the thermal decomposition characteristics of four propellants were investigated by DSC. The energy characteristics of four propellants with two expansion ratios(area ratios) of the nozzle were evaluated by using CEA software. The results show that: The effects of ammonium perchlorate and aluminium powder on the thermal stability of lead styphnate is little. The nitrocellulose makes the thermal stability of lead styphnate decrease. The thermal stability of the propellants decreases when the the mass ratio of nitrocellulose to ammonium perchlorate increase. The specific impulse of the propellant can be improved in two cases, one is when the mass content of nitrocellulose and ammonium perchlorate increase, the other is when the expansion ratio of the nozzle is enlarged.
出处 《材料导报》 EI CAS CSCD 北大核心 2011年第12期34-37,共4页 Materials Reports
基金 总装备部预研基金(9140C5203120906) 西北工业大学创业种子基金(Z2011029)
关键词 推进剂 MEMS-SPMT 热稳定性 DSC 能量特性 比冲 propellant, MEMS-SPMT, thermal stability, DSC, energy characteristics, specific impulse
  • 相关文献

参考文献4

二级参考文献30

  • 1范存杰,李逢春.微型固体火箭发动机用短点火延迟点火器研究[J].推进技术,1995,16(3):42-45. 被引量:3
  • 2清华大学工程力学系.流体力学基础(下册)[M].北京:清华大学,1994..
  • 3ORIEUX S,ROSSI C,ESTEVE D. Compact model based on a lumped parameter approach for the prediction of solid propellant micro-rocket performance [J]. Sensor and Actuators A: 2002, 202: 383-391.
  • 4FLEETER R. Microspacecraft [M]. Reston, VA: The Edge City Press, 1995.
  • 5AGRAWAL B N,OKANO S. Microelectro- mechanical systems for spacecraft applications [C]. SPIE,2001,4746:1251-1257.
  • 6GEORGE T. Overview of MEMS/NEMS technology development for space applications at NASA/JPL [J].SPIE,2003,5116:136-148.
  • 7RACHEL L, KERRY L. Discussion of micro-newton thruster requirements for a drag-free control system[C]. The 16th Annual AIAA/Utah State University Conference on Small Satellites. 2002.
  • 8LEWIS D, JANSON S, COHEN R, et al. Digital micropropulsion [J]. Sensors and Actuators A: Physical, 2000, 80(2): 143-154.
  • 9CHALONER C P, OLIVIER B A H. Advanced microsatellite mission-deep space applications and constraints [R]. European Space Agency,2003.
  • 10BECHTOLD T,RUDNYI E B,KORVINK J G.Automatic order reduction of thermo-electric model for microthruster ignition unit[C].Proc. of International Conference on Simulation of Semiconductor Processes and Devices,2002:131-134.

共引文献55

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部