期刊文献+

基于参数曲面三维势问题的边界面法 被引量:6

A boundary face method for 3D potential problems based on parametric surface
下载PDF
导出
摘要 提出了边界元法(BEM)的一种新的实现方法——边界面法(BFM)。在传统的边界元法中,单元不仅用来进行边界积分和函数插值,而且用来近似几何体。当离散网格较稀疏时,会引起较大几何误差,因而影响计算精度。本文基于参数曲面,将几何实体的边界曲面离散为参数空间里的曲面单元,边界积分和场变量的插值都是在曲面参数空间里进行。积分点的几何数据,如坐标、雅可比、外法向量都是直接由曲面算得,而不是通过单元插值近似,从而避免了几何误差。另外,该方法的实现是直接基于边界表征的CAD模型,做到了与CAD软件的无缝连接。三维位势问题的数值实例表明,该方法不仅比传统边界元法具有更高的精度,而且使用非常方便,容易做到自动分析。 This work presents a new implementation of the boundary element method(BEM),here called the boundary face method(BFM).The conventional BEM uses the standard elements for boundary integration and approximation of the geometry,and thus introduces errors of geometry.In this paper,the boundary faces of the geometry are discretized by patches in parametric space.Both boundary integration and variable approximation are also performed in the parametric space.The geometric data at Gaussian integration points,such as the coordinates,the Jacobians and the out normals are calculated directly from the faces rather than from elements,and thus no geometric error will be introduced.The BFM has real potential to seamlessly interact with CAD software,because its implementation can be directly based on a CAD model through its Brep data.Numerical examples for 3D potential problems demonstrate that the new method provides not only more accurate results than the conventional BEM,but also a new way toward automatic simulation,as simulations can be greatly simplified with our method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第3期326-331,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10972074) 国家863计划项目(2008AA042507) 湖南大学汽车车身先进设计与制造国家重点实验室自主课题(60870003)资助项目
关键词 边界元法 参数曲面 曲面单元 边界面法 CAE/CAD集成 BEM parametric surface surface patch boundary face method
  • 相关文献

参考文献10

  • 1CA布瑞比亚,等.边界单元理论和工程应用[M].龙述尧,等译.长沙:国防业出版社,1988.
  • 2Hughes T J R, Cottrell J A, Bazilevs Y. Isogeomet- tic analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005,194 : 4135-4195.
  • 3Wang L. Integration of CAD and boundary element analysis through subdivision methods[J]. Computers & Industrial Engineering, 2009,57(3) : 691-698.
  • 4CirakF M. Ortiz Fully Cl-eonforming subdivision el- ements for finite deformation thin shell analysis[J]. International Journal for Numerical Methods in Engineering, 2001,51:813-833.
  • 5Zhang Jian-ming, Qin Xian-yun, Han Xu, et al. A boundary face method for potential problems in three dimensions[J]. International Journal for Numerical Methods in Engineering, 2009,80 : 320-337.
  • 6Amit Shaw, Roy D. NURBS-based parametric mesh- free methods[J]. Computer Methods in Applied Me- chanics and Engineering, 2008,197 : 1541-1567.
  • 7Kagan P, Fischer A. Integrated mechanically based CAE system using B-Spline finite elements[J]. Com- puter Aided Design, 2000,32 : 539-552.
  • 8周焕林,牛忠荣,程长征,王秀喜.各向异性位势问题边界元法中几乎奇异积分的解析算法[J].计算力学学报,2008,25(3):333-338. 被引量:5
  • 9张耀明,孙焕纯.弹性力学平面问题的无奇异边界积分方程[J].计算力学学报,2001,18(3):321-325. 被引量:1
  • 10Lee C K. Automatic adaptive metric advancing front triangulation over curved surfaces [J]. Engineering Computations, 2000,17 : 48-74.

二级参考文献10

  • 1周焕林,牛忠荣,王秀喜,程长征.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193-197. 被引量:8
  • 2张耀明,孙焕纯.弹性薄板弯曲问题的弱奇异边界积分方程[J].大连理工大学学报,1996,36(1):13-19. 被引量:5
  • 3BREBBIA CA, TELLES J C, WROBEL LC. Boundary Element Techniques [M]. Berlin, Heidelberg: Springer-Verlag, 1984.
  • 4杜庆华,岑章志,嵇醒,等.边界积分方程方法--边界元法(力学基础与工程应用)[M].北京:高等教育出版社,1989.
  • 5TANAKA M, SLADEK V, SLADEK J. Regularization techniques applied to BEM[J]. Appl Mech Rev, 1994,47(10) : 457-499.
  • 6LUO J F, LIU Y J, BERGER E J. Analysis of two- dimensional thin structures (from micro-to nanoscales) using the boundary element method[J]. Computational Mechanics, 1998,22: 404-412.
  • 7LIU Y J. Analysis of shell-like structures by the boundary element method based on 3-D elasticity:formulation and verification[J]. Int J Numer Methods Eng, 1998,41 : 541-558.
  • 8CHANG Y P, KANG C S, CHEN DAVID J. The use of fundamental Green's functions for the solution of problems of heat conduction in anisotropic media [J]. Int J Heat Mass Transfer, 1973, 16. 1905- 1918.
  • 9MERA N S, ELLIOTT L, INGHAM D B, LESNIC D. A comparison of boundary element method formulations for steady state anisotropic heat conduction problems[J]. Engineering analysis with boundary elements,2001,25: 115-128.
  • 10孙焕纯,李性厚,张立洲.弹性力学问题的虚边界元-配点法[J].计算结构力学及其应用,1991,8(1):15-23. 被引量:21

共引文献4

同被引文献55

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部