期刊文献+

回采工作面热环境分析与风流冷却方式选择 被引量:8

Analysis on Thermal Environment and Selection of Airflow Cooling Methods in Coal Mining Face
下载PDF
导出
摘要 针对影响回采工作面热害因素复杂,供风量不合理的现象,通过对回采工作面热源因素的分析,计算了热源的放热量,建立了风流通过回采工作面的热交换模型,通过控制采区出口的风温在规程允许的范围内(即不超过26℃),计算出了回采工作面入口处的风温及最优风量。当通风降温不能满足要求时,须采用机械降温的方式,为实现最优的机械降温效果,对2种冷却方式的优缺点进行分析。结果表明:在采深不大、岩温不高的工作面采用集中冷却方式;在回采深度大、岩温高的工作面采用分段均匀冷却方式。 According to the complicated thermal disaster factors affected to the coal mining face and the irrational ventilation supply phenomenon,the analysis on the thermal source factors of the coal mining face was applied to calculate the heat releasing value of the thermal source and establish the heat-exchange model of the air flow passing through the coal mining face.With the control of the ventilation temperature at the exit of the mining block within the allowed limit(no more than 26 ℃) of the regulation,the ventilation temperature and the optimum ventilation quantity at the entrance to the coal mining face was calculated.When the ventilation cooling could not meet the requirements,a mechanical cooling method shall be applied.In order to have the optimum mechanical cooling effect,the advantages and disadvantages of two cooling methods were analyzed.The results showed that a centralized cooling method could be applied to the coal mining face with a mining depth not so high and the rock temperature not high and a sectional even cooling method could be applied to the coal mining face with a high mining depth and a high rock temperature.
作者 王伟 杨德源
出处 《煤炭科学技术》 CAS 北大核心 2011年第6期42-45,共4页 Coal Science and Technology
基金 国家高技术研究发展计划(863计划)重点资助项目(2008AA062103)
关键词 回采工作面 热源 最优风量 集中冷却 分段均匀冷却 coal mining face thermal source optimized ventilation quantity centralized cooling sectional even cooling
  • 相关文献

参考文献6

二级参考文献13

  • 1李莉,张人伟,王亮,彭担任.矿井热害分析及其防治[J].煤矿现代化,2006(2):34-35. 被引量:25
  • 2国家安全监管总局关于印发煤矿安全生产“十一五”规划的通知[EB/OL].http://www.chinasafety.gov.cn/2007-02/28/content_220502.htm.
  • 3Funnell, R. C. and Sheer, T. J.. Optimisation of cooling resources in deep stopes, Proceedings, Seventh International Mine Ventilation Congress, Cracow, Poland, 2001.
  • 4McDaniel, K., Wallace, K. G., and Shahcheraghi, N.. The application of Mining Industry Ventilation Survey Techniques to a Complex Computational Fluid Dynamics Analysis, Proceedings of the Tenth US/International Mine Venti lation Symposium, Anchorage, Alaska, 2004.
  • 5Wu, H. W.. Mine ventilation recirculation and cooling strategies in deep Australian mines [D]. Australia: The University of Queensland, 1994.
  • 6Gupta, M. L. , Panigrahi, D. C. , Banerjee, S. P.. Heat flow studies in longwall faces in India. In: R. Bhaskar, ed. , Proceedings of 6th U. S. Mine Ventilation Symposium, SME, Littleton, CO, 1993, 421-427.
  • 7Schlotte, W. Control of heat and humidity in German mines. In Proceedings of 8th US Mine Ventilation Symposium (Ed. J. C. Tien), University of Rolla, Missouri, 1999, 349-356.
  • 8胡华军.高温深矿井风流热湿交换及配风量的计算[D].山东:山东科技大学,2004.
  • 9McPherson, M. J.. The analysis and simulation of heat flow into underground airways. Int. J. Min. Geol. Eng. 4, 1986, 165-196.
  • 10龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2003.

共引文献37

同被引文献57

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部