期刊文献+

压风机监控系统传感器故障检测与分离方法 被引量:3

Sensor Fault Detection and Separation Method of Monitoring System in Mine Pressurized Fan
下载PDF
导出
摘要 为了解决煤矿压风机监控系统关键传感器的故障检测与分离问题,提出了一种基于主元分析模型的传感器故障诊断方法。该方法可辨识系统中相关性较高的若干传感器,并为之建立主元分析模型。根据所建立的模型,利用平方预报误差(SPE)判断系统中是否有传感器发生故障;利用SPE贡献图定位故障传感器。系统经阶跃偏差故障试验和漂移故障试验,结果表明,将主元分析法应用于煤矿压风机监控系统传感器的故障检测与分离,可为压风机系统的正常运行提供有力保障。 In order to solve the key sensor fault detection and separation problems of the mine pressurized fan monitoring and control system,a sensor fault diagnosis method based on the main element analysis model was provided.The main element analysis model was established with the several sensors highly related in the identification system of the diagnosis method.According to the established model,the square prediction error was applied to judge any sensors with fault in the system.The contribution plot of the square prediction error was applied to position the fault sensor.The system had the step deviation fault test and the drift fault test and the results showed that the main element analysis method could be applied to the sensor fault detection and separation of the monitoring and control system for the mine pressurized fan and could provide the powerful protection to the normal operation of the mine pressurized fan system.
出处 《煤炭科学技术》 CAS 北大核心 2011年第6期82-85,共4页 Coal Science and Technology
基金 河南理工大学博士基金资助项目(B2010-48)
关键词 压风机监控系统 主元分析法 传感器 故障检测与分离 monitoring and control system of pressurized fan main element analysis method sensor fault detection and separation
  • 相关文献

参考文献5

二级参考文献54

  • 1童国强,陈前.基于数据融合技术的多模型状态监测与故障预报[J].工业控制计算机,2005,18(6):19-20. 被引量:3
  • 2冯恩波,肖德云,方崇智.一种基于时序预报神经网络的故障预报方法及其应用[J].自动化学报,1995,21(3):348-352. 被引量:11
  • 3[1]Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998, 6:457-469.
  • 4[2]Qin S J, Li W H. Detection and identification of faulty sensors with maximum sensitivity[C]. In:Proceedings of American Control Conference, California, 1999,613-617.
  • 5[4]Chiang L.H., Russell E.L., and Braatz R.D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2000.
  • 6[5]Jackson J.E. A User's guide to principle components[M]. Wiley, New York, 1991.
  • 7[1]Wang Shengwei,Fu Xiao.AHU sensor fault diagnosis using principal component analysis method[J].Energy and Buildings,2004,36(2):147-160.
  • 8[2]Ding Hui,Liu Junhua,Shen Zhongru.Drift reduction of gas sensor by wavelet and principal component analysis[J].Sensors and Actuators,B:Chemical,2003,96(12):354 -363.
  • 9[4]Jackson J E.A user's guide to principal component[M].New York:Wiley,1991.
  • 10[6]MacGregor J F,Jaeckle C,Kiparissides C,et al.Process monitoring and diagnosis by multiblock PLS Methods[J].AIChE J,1994,40(5):826 -838.

共引文献48

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部