期刊文献+

浓缩过程数学模型及其在浓缩机设备选型中的应用(续) 被引量:1

Mathematical Model of Concentration Process and Its Application in Type Selection of Thickener(Cound.)
下载PDF
导出
摘要 利用现象学理论和数学理论建立的沉降过程数学模型和偏微分方程数值方法,对磁选工艺和浮选工艺的尾矿之絮凝沉降过程进行数值模拟,并按照实际絮凝沉降工艺过程进行试验。通过分析比较沉降试验数据与模拟数据,证明所采用的数学模型能够正确描述具有絮凝反应的工业实际沉降过程,可作为工业沉降工艺设计及沉降设备选型设计的理论依据。 Based on the mathematical model of settling process and numerical method of partial differential equation established by phenomenological theory and mathematical theory,the numerical simulation for flocculation settling process of tailings with flotation technology and magnetic separation technology is carried out,and its test is carried out according to practical flocculating settling process.By analyzing and comparing the test data and simulation data,it proves that the used mathematical model can correctly describes the industrial practical settling process with flocculating reaction,which could be used as theoretical basis for the design of industrial settling technology and the type selection of settling equipment.
出处 《有色设备》 2011年第3期6-8,共3页 Nonferrous Metallurgical Equipment
关键词 沉降过程 浓缩过程 沉降数学模型 数值模拟 settling process concentration process mathematical model for settling numerical simulation
  • 相关文献

参考文献6

  • 1Burger R, Concha F. Mathematical model and numerical simulation of the settling of flocculated suspensions[ J]. Int J Multiphase Flow, 1998,24 ( 6 ) : 1005 - 1023.
  • 2Burger R,Garcia A,Karlsen K H. On an extended clarifierthickener model with singular source and sink terms [ J ]. Eur J Appl Math,2006,17(3) :257 -292.
  • 3Burger R,Damasceno J J R, Karlsen K H. A mathematical model for batch and continuous thickening of flocculatedsuspension in vessel with varying cross-section [ J]. Int J Miner Process ,2004,73 ( 2 - 4 ) : 183 - 208.
  • 4Burger R, Karlsen K H. On some of upwind dilterence scheme for the phenomenological sedimentation-consolidation model[J]. J Eng Math,2001,41(2-3):145-166.
  • 5Diehl S. Estimation of the batch settling flux function for an ideal suspension from only two experiments[J]. Chem Eng Sci ,2007,62 ( 17 ) :4589 - 4601.
  • 6Usher S P, Scales P J, White L R. Prediction of transient bed height in batch sedimentation at large times [ J ]. AIChE J ,2006,52 ( 3 ) :986 - 993.

同被引文献6

  • 1BURGER R, CONCHA F. Mathematical model and numerical simulation of the settling of flocculated suspensions [ J ]. Int J Mul- tiphase Flow, 1998,24 (6) : 1005-1023.
  • 2BURGER R, DAMASCENO J J R, KARLSEN K H. A mathematical model for batch and continuous thickening of flocculated suspension in vessel with varying cross . section [ J ]. Int J Miner Process, 2004,73 (2-4) : 183 -208.
  • 3GUO YABING, HU YUXIAN, STEPHEN J S. Parameters estimate of the sedimentation mathematics model from the simple tests [C]//2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE2010), Chengdu China, 2010.6.
  • 4刘斌,郭亚兵.固液分离两项流数值模拟研究[D].太原:太原科技大学,2009.
  • 5郭亚兵,王守信,李秉正.浓缩过程数学模型及其在浓缩机设备选型中的应用[J].有色设备,2011,25(2):10-12. 被引量:9
  • 6赵鑫,郭亚兵.浓缩机设计理论分析及应用[J].太原科技大学学报,2013,34(1):37-41. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部