期刊文献+

基于频繁镜头集合的视频场景分割方法 被引量:1

A VIDEO SCENE SEGMENTATION METHOD BASED ON FREQUENT SHOT SET
下载PDF
导出
摘要 提出一种基于全局场景特征在视频序列中寻找频繁镜头集合,并通过局部语义特征精确定位视频场景边界的视频场景分割方法。首先对分析视频进行高精度镜头分割,选取具有代表性的镜头关键帧。然后提取各镜头关键帧的全局场景特征和局部特征,并利用局部特征聚类得到的视觉词对各个镜头关键帧进行语义标注。接下来计算基于全局场景特征的镜头间相关性,结合视频场景的概念和特性,在镜头关键帧序列中寻找局部频繁出现的相关性高的镜头集合,粗略定位视频场景位置。最后利用镜头关键帧的语义标注特征精确定位视频场景边界。实验证明该方法能够准确、有效地检测并定位到大部分视频场景。 The paper proposes a video scene segmentation method that searches for frequent shot sets in video sequences on the basis of global scene characteristics as well as precisely locates video scene borders by local semantic properties.At first the analyzing video is shot split by high resolution to choose representative shot key frames.Then the global scene features and local features of every shot key frame are extracted.Then with the visual vocabulary created by local feature clustering,every shot key frame is semantically labeled.Next the relativity among shots based on global scene features is calculated.Combining the video scene concept and features,shot sets with high relativity in local frequent appearance are sought for among shot key frame sequences in order to roughly locate the video scene.At last the shot key frame semantic labeling feature is used to precisely define the video scene border.Experiments prove the method can accurately and effectively detect and locate most video scenes.
出处 《计算机应用与软件》 CSCD 2011年第6期116-120,共5页 Computer Applications and Software
基金 教育部高等学校博士学科点专项科研基金(20100071120033) 上海市科委项目(08dz1500109 10dz1204605)
关键词 视频场景分割 场景特征 局部特征 频繁镜头集合 Video scene segmentation Scene feature Local feature Frequent shot set
  • 相关文献

参考文献10

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 2Aude Oliva,Antonio Torralba.Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope[J]. International Journal of Computer Vision . 2001 (3)
  • 3Zhao Y,Wang T,Wang P.Scene segmentation and categorization us-ing NCuts. Computer Vision and Pattern Recognition . 2007
  • 4Rasheed Z,Shah M.Scene detection in Hollywood and TV shows. Computer Vision and Pattern Recognition . 2003
  • 5Chasanis V,Likas A,Galatsanos N.Movie segmentation into scene andchapters using locally weighted bag of visual words. Conferenceon Image and Video Retrieval . 2009
  • 6Sande K E,Gevers T,Snoek C G.Evaluating color descriptors for objectand scene recognition. IEEE Transactions on Pattern Analysis andMachine Intelligence . 2010
  • 7Chasanis,V.T,Likas,A.C,Galatsanos,N.P."Scene Detection in Videos Using Shot Clustering and Sequence Alignment". IEEE Transactions on Multimedia . 2009
  • 8Sivic J,Zisserman A.Video google:A text retrieval approach toobject matching in videos. Proceedings of InternationalConference on Computer Vision . 2003
  • 9Minerva Yeung,Yeo Boon-Lock,Liu Bede.Segmentation of video by clustering and graph analysis. Computer Vision and Image Understanding . 1998
  • 10Liang Fan,Siwei Ma,Feng Wu.Overview of AVS video standard. The Fifth International Conference on Multimedia and Exposition (ICME’04) . 2004

同被引文献11

  • 1BABER J, AFZULPURKAR N, SATOH S. A frame- work for video segmentation using global and local fea- tures[ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2013, 27 (5) : 13550071 - 135500729.
  • 2YANG H, YI J, ZHAO J, et al. Extreme learning ma- chine based genetic algorithm and its application in power system economic dispatch [ J ]. Neurocomput- ing, 2013,102 ( 15 ) : 154 - 162.
  • 3NGOC T A, HIRAMATSU K, HARADA M. Optimizing the rule curves of multi - use reservoir operation using a genetic algorithm with a penalty strategy [ J ]. Paddy and Water Environment, 2014,12( 1 ) : 125 - 137.
  • 4GUPTA N, SHEKHAR R, KALRA P K. Congestion management based roulette wheel simulation for opti- mal capacity selection: probabilistie transmission ex- pansion planning[ J ]. International Journal of Electri- cal Power and Energy Systems, 2012,43 ( 1 ) : 1259 - 1266.
  • 5HWANG S F, HSU Y C, CHEN Y. A genetic algo- rithm for the optimization of fiber angles in composite laminates [ J ]. Journal of Mechanical Science and Technology, 2014,28 ( 8 ) : 3163 - 3169.
  • 6张鸿,吴飞,庄越挺,陈建勋.一种基于内容相关性的跨媒体检索方法[J].计算机学报,2008,31(5):820-826. 被引量:34
  • 7印勇,王旭军.基于主色跟踪和质心运动的视频场景分割[J].计算机应用研究,2010,27(4):1563-1565. 被引量:1
  • 8华漫.基于语义的体育视频场景分割方法[J].计算机工程,2010,36(15):206-207. 被引量:2
  • 9刘嘉琦,封化民,闫建鹏.基于多模态特征融合的新闻故事单元分割[J].计算机工程,2012,38(24):161-165. 被引量:8
  • 10田景文,孔垂超,高美娟.一种车辆路径规划的改进混合算法[J].计算机工程与应用,2014,50(14):58-63. 被引量:5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部