期刊文献+

潜周期模型在周期型随机数据的数值微分中的应用研究 被引量:1

Research on Derivative Estimation of Periodic Random Data with Hidden Periodical Model
下载PDF
导出
摘要 从统计角度给出了一种周期型随机数据的数值微分的新方法。采用经典求解数值微分的思想,利用潜周期模型拟合离散的周期型随机观测数据,将拟合模型的导数作为随机数据的导数估计。基于随机逼近理论讨论了导数估计的存在惟一性,在对误差性质进行分析的基础上,利用极限理论证明了估计的相合性。 In this paper,a new method of the differentiation of a kind of periodic random data from the viewpoint of statistics was proposed.The observed random data was fit with the hidden periodical model(HPM),and the derivative of HPM as the estimation of the derivative of the function of the real data was used,which follows the common ideal of interpolating numerical differentiation.The existence and the uniqueness of the estimation based on the theory of random approximation were discussed,and which proved the consistency of the estimation by large sample theory after analyzing the error estimation in detail.
作者 马新生 胡斌
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2011年第2期200-204,共5页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(30970597) 江西省自然科学基金资助项目(2007GZS2398)
关键词 潜周期模型 导数估计 误差估计 hidden periodical model derivative estimation error estimation
  • 相关文献

参考文献9

二级参考文献37

  • 1[1]Cheng, J. and Yamamoto, M.. One new strategy for a priori choice of regularizing parametersin Tikhonov's regularization. Inverse Problems, 2000, 16:L31-L38
  • 2[2]Deans. S.R.. Radon transform and its applications. A Wiley-Interscience Publication, 1983
  • 3[3]Engl, H.W., Hanke, M. and Neubauer. A.. Regularization of Inverse Problems, 1996
  • 4[4]Gorenflo, R. and Vessella, S.. Abel integral equations. Analysis and Applications. Lecture Notes in Mathematics, 1461. Springer-Verlag, Berlin, 1991
  • 5[5]Groetsch, C.W.. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, 105. Pitman (Advanced Publishing Program), Boston, Mass-London, 1984
  • 6[6]Hammerlin, G. and Hoffmann, K.H.. Numerical mathematics. New York: Springer-Verlag,1991
  • 7[7]Hanke, M. and Scherzer, O.. Inverse problems light: numerical differentiation. Amer. Math. Monthly, 2001, 108(6):512-521
  • 8[8]Hegland, M.. Resolution enhancement of spectra using differentiation. Preprint 1998
  • 9[9]Reinsch, C.H.. Smoothing by spline functions. Numer. Math., 1967, 10:177-183
  • 10[10]Schumaker, L.L.. Spline functions: basic theory. Wiley, New York, 1981

共引文献16

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部