期刊文献+

几类典型网格下三维弹性问题的代数多层网格法 被引量:3

ALGEBRAIC MULTIGRID METHODS FOR 3D LINEAR ELASTICITY PROBLEMS ON SOME TYPICAL MESHES
原文传递
导出
摘要 有限元方法是数值求解三维弹性问题的一类重要的离散化方法。在有限元分析中,网格的几何形状及网格质量会对有限元离散代数系统的求解产生很大影响。该文系统研究了几类典型网格对几种常用AMG法计算效率的影响,并进行了详细的性能测试与比较。利用容易获知的部分几何与分析信息(如方程类型,节点自由度信息),再结合经典AMG法中的网格粗化技术,设计了具有更好计算效率和鲁棒性的AMG法。数值试验结果验证了算法的有效性。 Finite element method is one of the most efficient numerical methods for the solution of three-dimensional elasticity problems.In practice,the mesh geometry and mesh quality may have a great effect on the algebraic solvers.In this work,we have presented some numerical studies for evaluating the effectiveness of several commonly used algebraic multigrid(AMG) methods on some typical meshes.We can obtain much more robust and efficient AMG iteration by using the known information that is readily available in most finite element applications,for instance,the type of the partial differential equations(PDEs) considered and the number of physical unknowns residing in each grid,and by combining the coarsening techniques used in the classic AMG method.The efficiency and robustness of the resulting AMG methods are also confirmed by some numerical tests.
出处 《工程力学》 EI CSCD 北大核心 2011年第6期11-18,共8页 Engineering Mechanics
基金 国家自然科学基金项目(10972191) 国家自然科学基金重点项目(11031006) 湖南省高校科技创新团队支持计划资助项目 湖南省教育厅优秀青年项目(09B100)
关键词 三维弹性问题 代数多层网格法 各向异性网格 自适应网格 预处理 3D elasticity problems algebraic multi-grid anisotropic mesh adaptive mesh preconditioning
  • 相关文献

参考文献13

  • 1Brandt A. Algebraic multigrid theory: the symmetric case [J]. Applied Mathematics and Computation, 1986, 19: 23-56.
  • 2Ruge J, Stuben K. Algebraic multigrid, in Multigrid Methods [M]// McCormick S, ed. SIAM, Philadelphia, PA, 1987.
  • 3肖映雄,张平,舒适,阳莺.等代数结构面网格剖分下三维弹性问题的代数多重网格法[J].工程力学,2005,22(6):76-81. 被引量:4
  • 4Griebel M, Oeltz D, Schweitzer M A. An algebraic multigrid method for linear elasticity [J]. SIAM Journal of Scientific Computing, 2003, 25:385-407.
  • 5Jones J, Vassilevski P. AMGe based on element agglomeration [J]. SlAM Journal of Scientific Computing, 2001, 23(1): 109- 133.
  • 6Du Qiang, Huang Zhaohui, Wang Desheng. Mesh and solver coadaptation in finite element methods for anisotropic problems [J]. Numerical Methods for Partial Differential Equations, 2005, 21: 859-874.
  • 7Xiao Yingxiong, Shu Shi, Zhang Ping, Tan Min. An algebraic multigrid method for isotropic linear elasticity problems on anisotropic meshes [J]. Communications in Numerical Methods in Engineering, Currently known as: International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(5): 534-553.
  • 8Hypre: High performance preconditioners. Software Version: 2.0.0, 2006. http://www.llnl.gov/CASC/hypre.
  • 9Henson V. E, Yang U M. Boomer AMG: a parallel algebraic multigrid solver and preconditioner [J]. Applied Numerical Mathematics, 2002, 41: 155- 177.
  • 10Vanek P, Mandel J, Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems [J]. Computing, 1996, 56(3): 179- 196.

二级参考文献11

  • 1Ruge J W,Stuben K.Algebraic mutigrid,Mutigrid methods[M].SIAM,1987.
  • 2Mandel Jan,Brezina Marian and Vanek Petr.Energy optimization of agebraic multigrid bases[J].Computing,1999,62(3):205-228.
  • 3Chang Qianshun,Wong Yau Shu and Fu Hanqing.On the algebraic multigrid method[J].Journal of Computational Physics,1996,125:279-292.
  • 4Chan T F,Xu Jinchao and Zikatanov Ludmil.An agglomeration multigrid method for unstructured grids[J].Contemporary Mathematics,1998,218:67-81.
  • 5Li Xiaoye S.An overview of SuperLU:Algorithms,implementation,and user interface[R].Technical Report LBNL-53848,Lawrence Berkeley National Laboratory,Sepember,2003.
  • 6Sadd Y.Iterative Methods for Sparse Linear Systems[M].PWS Publish Corporation,Boston,1996.
  • 7Wan W L.Interface preserving coarsening multigrid for elliptic problems with highly discontinuous coefficients[J].Numerical Linear Algebra with Application,2000,7(6):727-741.
  • 8许南宁,彭惠明.FAM3D三维弹性程序[J].武汉水利电力大学(宜昌)学报,1997,19(3):46-51. 被引量:3
  • 9彭惠明,崔志强,贾少燕.三维弹性问题的有限分析法[J].武汉水利电力大学(宜昌)学报,1997,19(4):41-45. 被引量:2
  • 10程普新,韩德化.三维弹性问题的解析解[J].哈尔滨建筑大学学报,2000,33(4):117-120. 被引量:2

共引文献3

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部