期刊文献+

两种波浪理论下铰接塔平台的非线性运动特性分析 被引量:1

ANALYSIS OF NONLINEAR DYNAMIC BEHAVIORS OF AN ARTICULATED TOWER PLATFORM UNDER TWO WAVE THEORIES
原文传递
导出
摘要 将铰接塔平台简化为底端具有线扭转弹簧支撑,顶端附有集中质量块的水中柔性梁。采用连续介质力学方法,在小变形假设下,应用大挠度理论建立了梁的非线性耦合运动控制方程和边界条件。基于Airy线性波理论和二阶Stokes波理论,应用Morison方程计算梁在水中所受的水动力。运用有限差分法和Runge-Kutta法得到了方程数值解,分析了两种波浪理论下梁的非线性振动特性,讨论了二阶Stokes波的非线性项对运动特性的影响,并对大挠度理论下非线性结构与横截面转角近似下非线性结构及线性结构进行了比较。 An articulated tower platform is modeled as a flexible beam supported by a linear-elastic torsional spring at the base and with a point mass at the free end.Using the method of continuum mechanics and on the basis of small deformation and large deflection,nonlinearly coupled equations of motion and boundary conditions are derived.The fluid forces are modeled using a semi-empirical Morison equation under Airy wave theory and second-order Stokes wave theory.The nonlinear vibrations under two wave theories are analyzed through a finite difference approach and the Runge-Kutta method.The influences of nonlinearity of the second-order Stokes wave theory on the vibrations are studied,and the results of the nonlinear structures with accurate angles and with approximate angles and the linear structures are compared.
作者 沈纪苹 杨骁
出处 《工程力学》 EI CSCD 北大核心 2011年第6期242-248,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10872124/A020601) 上海市重点学科建设项目(Y0103) 上海市自然科学基金项目(06ZR14037)
关键词 柔性梁 大挠度 非线性耦合 二阶Stokes波理论 有限差分法 主共振 超谐共振 compliant beam large deflection non-linearly coupled second-order Stokes wave theory finite difference approach principal resonance ultraharmonic resonance
  • 相关文献

参考文献18

  • 1吴应湘,李华,曾晓辉,刘昭平.深海采油平台发展现状和设计中的关键问题[J].中国造船,2002,43(z1):80-86. 被引量:15
  • 2张大刚.深海油田的开发——当前国际应用及发展趋势[J].中国造船,2005,46(4):41-46. 被引量:12
  • 3Chakrabarti S. Hydrodynamics of offshore structures [M]. Southampton, Great Britain: Computational Mechanics Publications, Inc., 1987.
  • 4Kirk C L, Jain R K. Response of articulated tower to waves and current [C]. The 9th Annual Offshore Technology Conference, 1977, Ann Arbor, 545-552.
  • 5Rgahothama A, Narayanan S. Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method [J]. Ocean Engineering, 2000, 27: 1087- 1107.
  • 6谢文会,唐友刚,周满红.深水铰接塔平台的非线性动力特性分析[J].工程力学,2006,23(9):36-41. 被引量:5
  • 7Haverty K F, McNamara J F, Moran B. Finite dynamics motions of articulated offshore loading towers [C]. Proceedings of the International Conference of Marine Research Ship Technology and Ocean Engineering, Cambridge, UK: 1982: 17-26.
  • 8McNamara JF, Lane M. Practicle modeling for articulated risers and loading columns [J]. Journal of Energy Resources Technology, 1984, 35: 444-450.
  • 9谢文会,唐友刚.考虑弹性变形铰接塔平台非线性动力响应[J].海洋工程,2007,25(2):21-25. 被引量:4
  • 10Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories [J]. Journal of Sound and Vibration, 1999, 225(5): 935- 988.

二级参考文献14

  • 1TANG You-gang(唐友刚),GU Jia-yang(谷家扬),ZUO Jian-li(左建立),MIN Jian-qin(闵建琴).NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT[J].Applied Mathematics and Mechanics(English Edition),2005,26(8):1040-1046. 被引量:1
  • 2[5]Jose Carlos Lima de Almeida, Carlos Gomes Jordani, Ronaldo Rosa Rossi, Richard David Schachter. The Development and Application of a Design Methodology for the Concept Desigh of Tensi on Leg Platforms (TLPs)Using Non-Dimensional Parameters. OMAE2001/OIN-1242:697-705.
  • 3[6]M.H. Kim, Arcandra, Y.B. Kim. Variability of Spar Motion Analysis Against Design Methodologies/Parameters. OMAE2001/OIN-1064:153-162.
  • 4[7]S. Sreekumar, S.K. Bhattacharyya, V.G. ldichandy. Coupled Dynamics of SeaStar Mini Tension Leg Platform Using Linear Diffraction-Radiation Theory. OMAE2001/OIN-1074:203-210.
  • 5Fjeld S,Flogeland S.Deepwater platforms problem areas[C].In:European Offshore Petroleum Conference and Exhibition,1980,223~234.
  • 6Bar-Avi P,Benaroya H.Non-linear dynamics for an articulated tower in the ocean[J].Journal of Sound and Vibration,1996,190(1):77~103.
  • 7Nagamani K,Ganapathy C.Finite element analysis for nonlinear dynamic response for articulated towers[J].Computers & Structures,1996,59(2):213~223.
  • 8Suneja B P,Datta T K.Active control for ALP with improved performance function[J].Ocean Engineering,1998,25(10):817~835.
  • 9Bar-Avi P,Benaroya H.Response for a two degrees for freedom articulated tower to different environmental conditions[J].International Journal of Nonlinear Mechanics,1996,31(5):717~741.
  • 10Raghothama,Narayanan S.Bifurcation and chaos for an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method[J].Ocean Engineering,2000,27:1087~1107.

共引文献27

同被引文献9

  • 1G.B.Airy.Tides and Waves [M]. London:Encyclopaedia Metropolitana, 1845.
  • 2Robert G.Dean, Robert A.Dalrymple.Water wave mechanics for engineers and scientists[M]. London:World Scientific,1991.
  • 3G.G.Stokes. On the theory oscillatory waves. Transactions of Cambridge Philosophical Society,1847,8(4):441-455.
  • 4Khaled T. Ramadan, Hossam S.Hassan, Sarwat N.Hanna. Modeling of tsunami generation and propagation by a spreading curvilinear seismic faulting in linearized shallow-water wave theory [J]. Applied Mathematical Modelling,2011 (35):61-79.
  • 5A.Ben-Menahem, M.Rosenman. Amplitude patterns of tsunami waves from submarine earthquakes [J]. J.Geophys.Res,1972 (77):3097-3128.
  • 6Abdul Hayir. Ocean depth effects on tsunami amplitudes used in source models in linearized shallow-water wave theory[J]. Ocean Engineering,2004(31):353-361.
  • 7Dilip Das. B.N.Mandal. Construction of Wave-free Potential in the Linearized Theory of Water Waves[J]. J.Marine Sci.Appl,2010 (9):347-354.
  • 8钱铁.使用区域变换方法的线性波动数学模型[J].水运工程,1989(9):22-29. 被引量:1
  • 9张双志,谢鲁冰,张莉娜.小振幅波的定解问题[J].应用能源技术,2010(6):22-24. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部