期刊文献+

关于目标跟踪定位的仿真方法研究

Study on Similation Method of Target Tracking and Locating
下载PDF
导出
摘要 研究雷达定位精度和准确性问题,为了解决在目标定位跟踪中由于目标机动引起的无迹卡尔曼滤波(UKF)误差大和滤波发散问题,提出了一种基于UKF和自适应神经网络-模糊推理系统(ANFIS)的新的目标跟踪定位方法。将自适应神经网络-模糊推理系统应用于目标跟踪系统,利用状态变量的预测误差和预测误差的变化率来自适应地调整卡尔曼滤波器的系统噪声协方差矩阵,实现了模糊推理、神经网络和UKF的有效结合,并应用于雷达目标定位跟踪系统进行仿真。仿真结果表明,方法比UKF有更好的跟踪性能,收敛快,对目标机动有更好的适应能力,为设计提供了依据。 A Target tracking algorithm is proposed to overcome the defects of poor filtering precision and filtering disconvergence while using unscented Kalman filter.The method combines the advantages of Unscented Kalman Filter(UKF) and adaptive neuro-fuzzy inference system(ANFIS).ANFIS is used to adjust system noise covariance matrix in target tracking system.Fuzzy inference,neural networks and UKF are integrated effectively.The proposed method is applied to simulation of radar target tracking.The simulation results show that the proposed method has the advantages of higher precision,faster convergence,and stronger ability to track maneuvering targets.
出处 《计算机仿真》 CSCD 北大核心 2011年第6期22-25,29,共5页 Computer Simulation
基金 航天科技创新基金资助项目(N7CH0003) 航天支撑技术基金资助项目(N7CH0004)
关键词 模糊推理系统 无迹卡尔曼滤波 机动目标跟踪 Fuzzy inference system Unscented kalman filter(UKF) Maneuvering target tracking
  • 相关文献

参考文献11

  • 1X R Li, V P Jilkov. Survey of maneuvering target tracking [ J ]. Part I. Dynamic models. IEEE Trans Aerospace Electron System, 2003,39(4) :1333 -64.
  • 2B J Lee, et al. Fuzzy - logic - based IMM algorithm for tracking a maneuvering target[ C]. IEE Proc. -Radar Sonar Navig. , Febru- ary 2005, 152(1) :16 -22.
  • 3Z L Jing. Neural network - based state fusion and adaptive tracking for maneuvering targets[ C]. Communication in Nonlinear Science Numerical Simulation, 2005(10) : 395 -410.
  • 4Hu Hong - tao, Jing Zhong - liang, Hu Shi - qiang. Unscented fuzzy - controlled current statistic model and adaptive filtering for tracking maneuvering targets [ C ]. Communications in Nonlinear Science and Numerical Simulation, 2006. 961 - 972.
  • 5王青,黄燕,石晓荣.雷达/红外双模制导背景下的模糊目标跟踪器[J].系统仿真学报,2003,15(8):1152-1154. 被引量:14
  • 6J S Roger Jang. ANFIS : Adaptive - Network - Based Fuzzy Inference Systems[ C]. IEEE Trans on System, Man, and Cybernetics, 1993,23 ( 3 ) :665 - 685.
  • 7Q Yuan, C Y Dong, Q Wang. An adaptive fusion algorithm based on ANFIS for radar/infrared system[J]. Expert Systems with Applications, 2007.1 -10.
  • 8Hao Qin, Simon X Yang. Adaptive - Network - Based Fuzzy Inference Systems based approach to nonlinear noise cancellation for images [J]. fuzzy sets and systems, 2007 (158) : 1036 - 1063.
  • 9Ning zhou Cui, Lang Hong, Jeffery R. Layne. A comparison of nonlinear filtering approaches with an application to ground target tracking[J]. Signal Processing, 2005 (85) : 1469 - 1492.
  • 10Simon J Julier. The Scaled Unscented Transformation [ C ]. Proceedings of American Control conference, 2002. 4555 - 4559.

二级参考文献10

  • 1房建成,申功勋,万德钧.一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究[J].中国惯性技术学报,1998,6(4):2-7. 被引量:19
  • 2陈则王,袁信.联合卡尔曼滤波在车辆组合导航系统中的应用[J].重庆大学学报(自然科学版),2005,28(10):86-90. 被引量:11
  • 3J.Z.Sasiadek, J.Khe Sensor Fusion based on Fuzzy Kalman Filter[A].2001 Proceedings of the Second International Workshop on Robot Motion and Control[C], 2001, 275-283.
  • 4Shetty S, Alouani A T. A Multisensor Tracking System With an Image-Based Maneuver Detector [J]. IEEE Trans. On Aerospace and Electronic Systems, 1996, 32(1): 167-185.
  • 5Zhen Ding, Henry Leung, Keith Chart, Zhiwen Zhu. Model-Set Adaptation Using a Fuzzy Kalman Filter [J]. Mathematical and Computer Modeling, 2001, 34: 799-812.
  • 6N A Carlson. Federated Kalman filter simulation results [ J ]. Navigation. 1994,41 ( 3 ) : 297 - 321.
  • 7Simon J Julier, Jeffrey K Uhlmann. A New Extension of the kalman Filter Nonlinear Systems[ J ]. SPIE, 1997, 3068 : 182 - 193.
  • 8Simon J Julier, Jeffrey K Ulhmann. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J]. IEEE Trans. on ,2000, AC,45(3) : 477 -482.
  • 9Aidada V J Kalman Filter Behavior in Beating - only Tracking Application [ J ]. IEEE Trans. AES, 1979,15 : 29 - 39.
  • 10J Levine, R . Marino. Constant - Speed Tsrget Tracking Via Bearings- only Measurements[J]. IEEE Trans. On AES, 1992, 28 (1) : 174-181.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部