期刊文献+

改进的人工鱼群混合算法在交通分配中的应用 被引量:11

Artificial Fish Swarm Algorithm for Solving Road Network Equilibrium Traffic Assignment Problem
下载PDF
导出
摘要 关于交通规划优化过程,针对均衡交通分配问题,采用目前Frank-W olfe算法收敛速度较慢、计算负担较大限制了均衡模型在实际中的应用,提出遗传算法的人工鱼群混合优化算法求解均衡交通分配问题。在人工鱼群混合优化算法中引入遗传算法的交叉和变异操作,实现优化行为的互补,建立遗传算法的人工鱼群混合优化算法求解变量较多,有较好的弹性需求和用户均衡交通分配模型。通过数值仿真,表明混合优化算法比单一的人工鱼群算法求解交通分配问题效果好,混合优化算法可靠、有效。 This paper is proposed to study the equilibrium traffic assignment problem.For the shortcomings of Frank-Wolfe algorithm such as slow convergence speed and heavy calculation burden that causes the equilibrium traffic assignment model cannot be used efficiently in reality,the hybrid optimization algorithm of AFSA based on GA is applied to solve the equilibrium traffic assignment problem.The hybrid optimization algorithm which realizes optimization complementarity after the crossing and mutation operation of GA is being introduced into AFSA is used to solve elastic demand user equilibrium traffic assignment model which has more variables and so much heavier calculation burden.The results of the numerical example are compared by simple AFSA and the hybrid optimization algorithm.The conclusion drawn from the above comparison is that the hybrid optimization algorithm is more reliable and efficient.
作者 姜山 季业飞
出处 《计算机仿真》 CSCD 北大核心 2011年第6期326-329,共4页 Computer Simulation
关键词 人工鱼群算法 遗传算法 弹性需求用户均衡模型 交通分配 Artificial fish swarm algorithm Genetic algorithm Elastic demand user equilibrium model Traffic assignment
  • 相关文献

参考文献6

二级参考文献25

共引文献893

同被引文献118

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:162
  • 2张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 3T Pun. A new method for gray level picture threshold using the en- tropy of histogram[ J]. Signal Processing, 1980,2(3):223-237.
  • 4BONABEAU E, THERAULAZ G. Swarm smarts[ J]. Scientific American, 2000, 282(3): 72-79.
  • 5VRIEND N J. An illustration of the essential difference between individual and social learning, and its consequences for computational analyses [ J]. Journal of Economic Dynamics and Control, 2000, 24(1): 23-30.
  • 6LEE S. M. , KWON K Y, JOH J. A Fuzzy Logic for Au- tonomous Navigation of Marine Vehicles Satisfying COL- REG Guidelines [ J ]. International Journal of Control Automation And Systems, 2004(2) :171-181.
  • 7GEMEINDER M, GERKE M. GA-Based Path Planning for Mobile Robot System Employing an Active Search Al- gorithm [ J ]. Applied Soft Computing, 2003 ( 3 ) : 149- 158.
  • 8TSOU Mingcheng, KAO Shenglong,SU Chienmin. Deci-sion Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts [ J ]. Journal of Navigation, 2010, 63(1): 1-16.
  • 9TSOU Mingcheng, HSUEH Chaokuang. The Study of Ship Collision Avoidance Route Planning by Ant Colony Algorithm[J]. Journal of Marine Science and Technolo- gy, 2010,18(5) :746-756.
  • 10FUJII Y, TANNAKA K. Traffic Capacity[J]. Journal of Navigation, 1971, 28(3): 328-344.

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部