期刊文献+

任意竖向荷载作用下单层饱和多孔介质一维瞬态响应精确解 被引量:1

Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings
下载PDF
导出
摘要 基于Biot理论,考虑流体和固体颗粒的压缩性以及惯性、黏滞和机械耦合作用,得到了表面任意竖向荷载作用下单层饱和多孔介质一维瞬态响应的精确解。文章首先导出了以无量纲位移表示的矩阵形式的控制方程,并将边界条件齐次化。采用分离变量法求解不考虑黏滞作用的特征值问题,得到一组关于空间坐标的正交函数基。在此基础上,利用变异系数法和基函数的正交性,得到一系列可以通过状态空间法求解的相互解耦的关于时间的二阶常微分方程组及相应的初始条件。最后通过算例验证本文的正确性。 Based on the Biot's Theory,considering the inertial,viscous and mechanical couplings and the compressibility of fluid and solid particles,exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary loadings applied on its top surface are developed.Firstly,the dimensionless displacement governing equations in matrix form are derived and the boundary conditions is homogenized.Then,by using the separate variable method the eigen-value problem for the corresponding nonviscous problem is solved to get a series of orthogonal function base with respect to space.After this,by applying the variation coefficient method and making use of the orthogonality of the function base,a series of decoupling second-order ordinary differential equations with respect to time together with their corresponding initial conditions,which can be solved by the state-space method,are obtained.Finally,two examples are given to demonstrate the correctness of the present solution.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2011年第6期966-970,共5页 Chinese Journal of Geotechnical Engineering
基金 国家"973"重点基础研究课题(2007CB714200) 中国地震局地震行业科研专项项目(200808022)
关键词 瞬态响应 精确解 饱和 多孔介质 transient response exact solution saturation porous medium
  • 相关文献

参考文献10

  • 1SCHANZ M, CHENG AHD. Transient wave propagation in a one-dimensional poroelastic column[J]. Acta Mechanica. 2000, 145:1 - 8.
  • 2BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I : low-frequncy range[J]. The Journal of the Acoustical Society of America. 1956, 28:168 - 178.
  • 3BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅱ: higher frequncy range[J]. The Journal of the Acoustical Society of America, 1956, 28:179 - 191.
  • 4SCHANZ M. Poroelastodynamics: Linear Models, analytical solutions, and numerical methods[J]. Applied Mechanics Reviews, 2009, 62:1 - 15.
  • 5GARG S K, ADNAN H, NAYFEH, et al. Compressional waves in fluid-saturated elastic porous media[J]. Journal of Applied Physics, 1974, 45:1968 - 1974.
  • 6HONG S J, SANDHU R S, WOLFE W E. On grag's solution of biot's equations for wave propagation in a one-dimensional fluid-saturated elastic porous solid[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 1988, 12:627 - 637.
  • 7SIMON B R, ZIENKIEWICZ O C, PAUL D K. An analytical solution for the transient response of saturated porous elastic solids[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8:381 - 398.
  • 8CHENG AHD, BADMUS T, BESKOS D. Integral equations for dynamic poroelasticity in frequency domain with bem solution[J]. Journal of Engineering Mechanics, 1991, 117: 1136- 1157.
  • 9GAJO A, MONGIOVI L. Analytical solution for the transient response of saturated linear elastic porous media[J]. International Journal for Numerical Methods in Engineering, 1995, 19:399 - 413.
  • 10GAJO A. Influence of viscous coupling in propagation of elastic waves in saturated soil[J]. Journal of Geotechnical Engineering, 1995, 121:636 - 64.

同被引文献16

  • 1钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 2BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
  • 3BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. low-frequency range[J]. Journal of Acoustical Society of America, 1956, 28(2): 168- 178.
  • 4BlOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: lI. high-frequency range[J]. Journal of Acoustical Society of America, 1956, 28(2): 179- 191.
  • 5BOWEN R. Incompressible porous media models by use of the theory of mixtures[J]. Intemational Journal of Engineering Science, 1980 18(9): 1 129 - 1 148.
  • 6BOWEN R. Compressible porous media models by use of the theory of mixtures[J]. International Journal of Engineering Science, 1982 20(6): 697 - 735.
  • 7SCHANZ M, CHENG A H D. Transient wave propagation in a one-dimensional poroelastic column[J]. Acta Mechanica, 2000 145(1/2/3/4): 1 - 18.
  • 8SCHANZ M. Poroelastodynamics: linear models, analytical solutions and numerical methods[J]. Applied Mechanics Reviews, 2009 62(3): 1 - 15.
  • 9GARG S K, NAYFEH A H, GOOD A J. Compressional waves in fluid-saturated elastic porous media[J]. Journal of Applied Physics 1974, 45(5): 1 968- 1 974.
  • 10HONG S J, SANDHU R S, WOLFE W E. On Grag's Solution of Biot's equations for wave propagation in a one-dimensional fluid- saturated elastic porous solid[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(6): 627 - 637.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部