期刊文献+

水合甘氨酸体系水桥式质子迁移的理论研究 被引量:3

Theoretical Studies on the Proton Transfer through Water Bridges in Hydrated Glycine Cluster
原文传递
导出
摘要 水分子与甘氨酸作用会导致甘氨酸羧基上的质子迁移到氨基上,质子可以通过水分子链进行迁移.采用密度泛函理论的B3LYP/6-31++g**方法研究了水分子链的逐渐增长(1~5个水分子)对质子迁移的影响,发现水分子数少于5时,质子迁移一步完成;水分子数为5时,质子迁移经由一个中间体,需两步完成;水分子链的增长使质子迁移反应的自由能改变值越来越低,但是反应的能垒越来越高,即在热力学上有利于质子迁移反应,在动力学上不利于质子迁移反应. Density function theory(DFT) at the level of B3LYP/6-31++g** was employed to theoreti-cally investigate the intramolecular proton transfer through water bridge chain from carboxyl to amino in glycine cluster.The number of water molecules plays an important role in the proton transfer through water bridge chain.When the number of water molecules in water bridge chain is less than 5,the proton transfer through water bridge chain will complete cooperatively in one step,otherwise the proton transfer will com-plete in two steps via an intermediate.With the increase of water molecule chain increasing the activation energy but reducing the free energy of the reaction,so,the increase of water molecule chain is not in favor of the proton transfer dynamically,but is in favor of proton transfer thermally.
作者 孟祥军
出处 《化学学报》 SCIE CAS CSCD 北大核心 2011年第11期1273-1279,共7页 Acta Chimica Sinica
基金 河北省教育厅基金(No.Z2007205) 唐山市应用基础基金(No.06234501A-10) 唐山师范学院基金(No.06D08)资助项目
关键词 水合甘氨酸 质子迁移 两性离子 水桥链 密度泛函理论 hydrated glycine proton transfer zwitterions water bridge chain DFT
  • 相关文献

参考文献33

  • 1Aikens, C. M.; Gordon, M. S. J. Am. Chem. Soc. 2006, 128, 12835.
  • 2Yamabe, S.; Ono, N.; Tsuchida, N. J. Phys. Chem. A. 2003, 107, 7915.
  • 3Fernandez, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000. 113. 9714.
  • 4Ding, Y.; Krogh-Jespersen, K. J. Comput. Chem. 1996, 17, 338.
  • 5Ke, H. W.; Rao, L.; Xu, X.; Yan, Y. J. Sci. China Chem. 2010, 53, 383.
  • 6Blom, M. N. J. Phys. Chem. A 2007, 111, 7309.
  • 7Xu, S.; Nilles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696.
  • 8Cui, Q. J. Chem. Phys. 2002, 117, 4720.
  • 9Twari, S.; Mishra, P. C.; Suhai, S. Int. J. Quantum Chem. 2008, 108, 1004.
  • 10Xu, B. H.; Li, L. C.; Tang, Z. H. Chinese Journal of Atomic and Molecular Physics 2003, 20, 275.

同被引文献79

  • 1和芹,王克诚,周立新.甘氨酸与二价金属离子相互作用的理论研究[J].南开大学学报(自然科学版),2007,40(4):36-41. 被引量:15
  • 2Suenram RD, Lovas FJ. Millimeter wave spectrum of glycine. A new conformer. J Am Chem Soc, 1980, 102: 7180-7184.
  • 3Bonaccorsi R, Palla P, Tomasi J. Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc, 1984, 106: 1945-1950.
  • 4(a) Jensen JH, Gordon MS. On the number of water molecules necessary to stabilize the glycine zwitterion. J Am Chem Soc, 1995, 117: 8159-8170;.
  • 5) Balta B, Aviyente V. Solvent effects on glycine. I. A supermolecule modeling of tautomerization via intramolecular proton transfer. J Comput Chem, 2003, 24: 1789-1802;.
  • 6) Xu SJ, Nilles JM, Bowen KH. Zwitterion formation in hydrated amino acid, dipole bound anions: How many water molecules are required. J Chem Phys, 2003, 119: 10696-10701;.
  • 7) Aikens CM, Gordon MS. Incremental solvation of nonionized and zwitterionic glycine. J Am Chem Soc, 2006, 128: 12835-12850;.
  • 8) Bachrach SM. Microsolvation of glycine: A DFT study. J Phys Chem A, 2008, 112: 3722-3730;.
  • 9) Kim JY, Im S, Kim B, Desfrancois C, Lee S. Structures and energetics of gly-(H2O)5: Thermodynamic and kinetic stabilities. Chem Phys Lett, 2008, 451: 198-203;.
  • 10Hoyau S, Ohanessian G. Interaction of alkali metal cations (Li+-Cs+) with glycine in the gas phase: A theoretical study. Chem Eur J, 1998, 4: 1561-1569.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部