期刊文献+

基于核独立成分分析的极化SAR图像相干斑抑制 被引量:9

Research on Polarimetric SAR Image Speckle Reduction Using Kernel Independent Component Analysis
下载PDF
导出
摘要 为提高极化合成孔径雷达图像相干斑抑制的效果,提出基于核独立成分分析(kernel independent component analysis,KICA)的极化SAR图像相干斑抑制方法。该方法将三个通道的极化信息作为输入数据,经过KICA变换得到三个独立分量,取相干斑指数最小的分量作为滤波后的信息图像。由于将核函数引入到独立成分分析(independent component analysis,ICA)中,使在ICA中无法线性可分的信息在高维空间中达到线性可分。采用旧金山地区的AIRSAR数据与日本新潟地区的PISAR数据分别进行试验,并用相干斑指数和边缘保持系数从客观上进行评价。试验表明,与ICA算法相比,KICA算法具有更好的滤波效果和保持边缘信息的能力。 In order to improve the accuracy of polarimetric synthetic aperture radar image speckle reduction,a polarimetric SAR image speckle reduction method using kernel independent component analysis(KICA) is presented.This method uses the polarimetric information of three channels as its input data,obtains three independent components after KICA conversion,and takes the one with the smallest speckle index as the filtered results.Due to the introduction of kernel function,the information that can not be linearly separated using independent component analysis(ICA) algorithm achieves linearly separated in the kernel high-dimensional space.For the purpose of verifying the validity of the KICA method,the AIRSAR data of San Francisco and the PISAR data of Japan's Niigata were tested.The efficiency is objectively evaluated by the speckle reduction index and the edge preservation index.And the experiment results show that the image edges are retained better and the speckles are removed more effectively with the method of KICA algorithm compared with the ICA algorithm.
出处 《测绘学报》 EI CSCD 北大核心 2011年第3期289-295,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家863计划(2009AA12Z145)
关键词 极化SAR 独立成分分析 核独立成分分析 相干斑 polarimetric SAR independent component analysis kernel independent component analysis speckle
  • 相关文献

参考文献19

二级参考文献127

共引文献103

同被引文献97

  • 1武艳强,黄立人.时间序列处理的新插值方法[J].大地测量与地球动力学,2004,24(4):43-47. 被引量:41
  • 2黄世奇,刘代志.SAR图像斑点噪声抑制方法与应用研究[J].测绘学报,2006,35(3):245-250. 被引量:30
  • 3田金文,耿远明,程辉,于秋则.基于图像分割的SAR图像匹配方法[J].华中科技大学学报(自然科学版),2006,34(10):31-33. 被引量:6
  • 4杨沈斌,李秉柏,申双和,张萍萍.基于特征保持的线性多通道最优求和SAR图像滤波算法[J].测绘学报,2006,35(4):364-370. 被引量:9
  • 5周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59
  • 6STIAN S, ELTIFT T. A Stationary Wavelet-Domain Wiener Filter for Correlated Speckle[J]. IEEE Transactions on Geosciences and Remote Sensing, 2008, 46(4) : 1219-1230.
  • 7ELGAMEL S A, SORAGHAN J. Empirical Mode Decom- position Based Monopulse Processor for Enhanced Radar Tracking in the Presence of High-Power Interference[J]. LET Radar, Sonar and Navigation, 2011,5(7):769-779.
  • 8OLUFEMI A, VLADIMIR A, AUROOP R. Empirical Mode Decomposition Technique with Conditional Mutual Information for Denoising Operational Sensor Data [J]. IEEE Sensors Journal, 2011,11(10) : 2565-2575.
  • 9HUANG NE, SHEN Z, LONG SR, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[C]//Proceedings of the Royal Society of I.ondon. London: Is. n. 1, 1998: 903-995.
  • 10HAN C M, GUO H D, CHANG L W, et al. A Novel Method to Reduce Speckle in SAR Images [J]. International Journal of Remote Sensing , 2002, 23: 5095-5101.

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部