期刊文献+

光合有效辐射预测模型的核函数组合优化 被引量:8

Optimized Photosynthetic Active Radiation Prediction Model Based on Kernel Function Combination
下载PDF
导出
摘要 以林下参种植基地光合有效辐射(PAR)、散射辐射(PFDdif)和直射辐射(PFDdir)为研究对象,以支持向量机linear核函数(k1)、polynomial核函数(k2)、radial basis function核函数(k3)为基础,构建新核函数。使用K-fold交叉验证方法,利用粒子群算法(PSO)对惩罚参数c和g值优化。试验结果表明,利用grid search算法设定惩罚参数c为16和g值为1时,通过比较相关系数及符合拟合均衡原则下,选出以0.2k1+0.8k2核函数而构建的光合有效辐射预测模型效果最佳,对由PAR、PFDdir和PFDdif数据组成的预测集1和预测集2拟合程度分别为89.213 2%和81.789 6%。利用粒子群算法对惩罚参数c和g值优化后,预测模型对预测集1拟合程度达到92.156 0%,对预测集2拟合程度达到90.036 0%。可见,采用0.2k1+0.8k2核函数和PSO的支持向量机预测模型对PAR具备预测能力。 Using the photosynthetic active radiation(PAR),scattering radiation(PFDdif) and direct radiation(PFDdir) from the ginseng base in forest as research object,a support vector machine model about photosynthetic active radiation based on linear function(k1),polynomial function(k2) and radial basis function(k3) was constituted.By using K-fold cross validation method,penalty parameter c and g numerical value were optimized by particle swarm optimization.Penalty parameter c and g numerical value of photosynthetic active radiation support vector machine model were configured 16 and 1 by grid search algorithm.0.2k1+0.8k2 kernel function was chosed to construct the predict PAR model by related coefficient and the fitting equilibrium principle.Fitting index of predicting set 1 and 2 was separately 89.213 2% and 81.789 6% based on the predicting model.By using particle swarm algorithm,the two predicting models' parameters were optimized.Fitting index of predicting set 1 and 2 was separately 92.156 0% and 90.036 0%.The predicting model based on 0.2k1+0.8k2 and particle swarm algorithm showed ability to predict PAR variation trend.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2011年第6期167-173,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(30871452)
关键词 光合有效辐射 预测模型 支持向量机 核函数 粒子群算法 Photosynthetic active radiation Prediction model Support vector machine Kernel function combination Particle swarm algorithm
  • 相关文献

参考文献12

  • 1李先锋,朱伟兴,纪滨,刘波.基于特征优化和LS-SVM的棉田杂草识别[J].农业机械学报,2010,41(11):168-172. 被引量:26
  • 2田有文,张长水,李成华.基于支持向量机和色度矩的植物病害识别研究[J].农业机械学报,2004,35(3):95-98. 被引量:37
  • 3Vapnik V N. The nature of statistical learning theory[ M]. New York:Springer Press, 1995.
  • 4Evqeniou T,Pontil M. Machine leafing and its application[M]. New York: Springer,2005.
  • 5Wu Haiwei, Yu Haiye, Yang Haoyu, et al. Communication protocols realization of the prediction and evaluation light environment embedded systems[ C ]//2010 International Conference on Machine Vision and Human-Machine Interface,2010: 109 - 112.
  • 6Zhang X Z,Zhang Y G,Zhou Y H. Measuring and modeling photosynthetically active radiation in Tibet Plateau during April- October[ J ]. Agricultural and Forest Meteorology ,2000,102 ( 2 ) :207 - 212.
  • 7马金玉,刘晶淼,李世奎,梁宏,姜朝阳,王炳忠.基于试验观测的光合有效辐射特征分析[J].自然资源学报,2007,22(5):673-682. 被引量:26
  • 8白建辉,陈洪滨,王勇,王庚辰.香河地区光合有效辐射的测量和计算[J].气象与环境学报,2009,25(1):6-14. 被引量:8
  • 9Dumais S, Plantt J, Heckerman D, et al. Inductive learning algorithms and representations for text categorization [ C ] // Proceedings of the 7th International Conference on Information and Knowledge Management, 1998:148 - 152.
  • 10Leopolde, Kindermann J. Text categorization with support vector machines: how to represent texts in input space [ J ]. Machine Learning,2002,46( 1 ) :423 - 444.

二级参考文献96

共引文献115

同被引文献68

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部